• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.028 seconds

Comparative Analysis on the Characteristic of Typical Meteorological Year Applying Principal Component Analysis (주성분분석에 의한 TMY 특성 비교분석)

  • Kim, Shin Young;Kim, Chang Ki;Kang, Yong Heack;Yun, Chang Yeol;Jang, Gil Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.67-79
    • /
    • 2019
  • The reliable Typical Meteorological Year (TMY) data, sometimes called Test Reference Year (TRY) data, are necessary in the feasibility study of renewable energy installation as well as zero energy building. In Korea, there are available TMY data; TMY from Korea Institute of Energy Research (KIER), TRY from the Korean Solar Energy Society (KSES) and TRY from Passive House Institute Korea (PHIKO). This study aims at examining their characteristics by using Principle Component Analysis (PCA) at six ground observing stations. First step is to investigate the annual averages of meteorological elements from TMY data and their standard deviations. Then, PCA is done to find which principle components are derived from different TMY data. Temperature and solar irradiance are determined as the main principle component of TMY data produced by KIER and KSES at all stations whereas TRY data from PHIKO does not show similar result from those by KIER and KSES.

Ambulatory Aid Device for the Visually Handicapped Person Using Image Recognition (화상인식을 이용한 시각장애인용 보행보조장치)

  • Park Sang-Jun;Shin Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.568-572
    • /
    • 2006
  • This paper presents the device of recognizing image of the studded paving blocks, transmitting, the information by vibration to a visually handicapped person. Usually the blind uses the walking stick to recognize the studded paving block. This research uses a PCA (Principal Component Analysis) based image processing approach for recognizing the paving blocks. We classify the studded paving blocks into 5 classes, that is, vertical line block, right-declined line block, left-declined line block, dotted block and flat block. The 8 images for each of 5 classes are captured for each block by 112*120 pixels, then the eigenvectors are obtained in magnitude order of eigenvectors by using principal component analysis. The principal components for images can be calculated using projection of transformation matrix composed of eigenvectors. The classification has been executed using Euclidean's distance, so the block having minimum distance with a image is chosen as matched one. The result of classification is transmitted to the blind by electric vibration signals with different magnitudes and frequencies.

Grouping the Ginseng Field Soil Based on the Development of Root Rot of Ginseng Seedlings (유묘 뿌리썩음병 진전에 따른 이산재배 토양의 유별)

  • 박규진;박은우;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • Disease incidence (DI), pre-emergence damping-off (PDO), days until the first symptom appeared (DUS), disease progress curve (DPC), and area under disease progress curve (AUDPC) were investigated in vivo after sowing ginseng seeds in each of 37 ginseng-cultivated soils which were sampled from 4 regions in Korea. Non linear fitting parameters, A, B, K and M, were estimated from the Richards' function, one of the disease progress models, by using the DI at each day from the bioassay. Inter- and intra-relationships between disease variables and stand-missing rate (SMR) in fields were investigated by using the simple correlation analysis. Disease variables of the root rot were divided into two groups: variables related to disease incidence, e.g., DI, AUDPC and A parameter, and variables related to disease progress, e.g., B, K and M parameters. DI, AUDPC, and DUS had significant correlations with SMR in ginseng fields, and then it showed that the disease development in vivo corresponded with that in fields. Soil samples could be separated into 3 and 4 groups, respectively, on the basis of the principal component 1 (PC1) and the principal component 2 (PC2), which were derived from the principal component analysis (PCA) of Richards' parameters, A, B, K and M. PC1 accounted for B, K and M parameters, and PC2 accounted for A parameter.

  • PDF

Effect of Storage Temperature, Time and Natural Additives on the Changes in Flavor of Lentinus edodes (저장온도, 시간 및 천연첨가제가 표고버섯의 향 변화에 미치는 영향)

  • Han, Kee-Young
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.235-249
    • /
    • 2015
  • This study was carried out to investigate the flavor changes of Lentinus edodes at different storage temperatures, time and natural additives using an electronic nose with six metal oxide sensors. To preserve good quality of modified atmosphere packaged Lentinus edodes, Four natural additives(Artemisia princeps, Artemisia capillaries, green tea, and activated charcoal) were used. The mushrooms were packaged in polyethylene films with each treatment and were stored at 5, 10 and $20^{\circ}C$. Increase in storage temperature and storage time decreased the ratio of resistance in the electronic nose as well as first principal component scores. In addition, indicating quality of mushroom reduced at high temperature and long storage time. The results of the electronic nose and the principal component analysis(PCA) in the mushrooms with Artemisia princeps and Artemisia capillaries that were stored at $5^{\circ}C$, and green tea and activated charcoal which were stored at $10^{\circ}C$ showed the good effects to maintain the freshness along with reducing off-flavor. However, there were no differences between control and treatment groups at $20^{\circ}C$.

Biometrics through PCA & LDA (주성분 분석을 활용한 생체인식)

  • Oh, Se-Bin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.515-518
    • /
    • 2017
  • I used Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA) to utilize biometric technology for security. I used 14 korean consonants(ㄱ to ㅎ). And It has both information of gestures for each consonants and identity of user. So this experiment is set for this two aspects. I used database including 20 people's images. Each person did 140 action for every consonant with 10 trials. PCA and LDA must be applied on self-collected database using MATLAB programming. Equal Error Rate (EER) is used for evaluate performance of this analysis.

  • PDF

Face Recognition via Factorial Code Representation (Factorial Code 표현법을 이용한 얼굴 인식)

  • 이오영;박혜영;최승진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10B
    • /
    • pp.1444-1452
    • /
    • 2001
  • 얼굴인식에서 정보 이론적 접근방법은 얼굴 영상을 기저 영상의 합으로 분해하는 것을 기초로 한다. 가장 많이 쓰이고 있는 방법은 Principal Component Analysis (PCA)를 기반으로 하는 eigenface 방법이다. PCA를 기반으로 하는 방법은 데이터의 2차 통계적 구조만을 고려하므로 화소 사이의 고차 통계적 의존성은 고려되지 않는다. Factorial code 표현법은 효과적인 정보 표현의 좋은 방법으로 알려져 있고 이것은 Independent Component Analysis (ICA)와 밀접한 관련이 있다. Factorial code 표현법은 eigenface 방법과 비교할 때 중요한 정보가 포함되어 있는 데이터의 고차 통계적 구조도 고려되어 더욱 효과적인 정보 표현을 기대할 수 있다. 이 논문에서는 PCA를 이용하여 찾아낸 저차원 특징 공간에서 Factorial code 표현법을 이용하여 얼굴인식을 위한 통계적 특징점을 찾아낸다. 얼굴 인식에 있어서 Factorial code 표현법이 eigenface 방법보다 성능이 우수함을 모의실험을 통하여 입증한다.

  • PDF

Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods (지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지)

  • Son, Young-Tae;Yun, Deok-Kyun
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

A Feature Selection for the Recognition of Handwritten Characters based on Two-Dimensional Wavelet Packet (2차원 웨이브렛 패킷에 기반한 필기체 문자인식의 특징선택방법)

  • Kim, Min-Soo;Back, Jang-Sun;Lee, Guee-Sang;Kim, Soo-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.521-528
    • /
    • 2002
  • We propose a new approach to the feature selection for the classification of handwritten characters using two-dimensional(2D) wavelet packet bases. To extract key features of an image data, for the dimension reduction Principal Component Analysis(PCA) has been most frequently used. However PCA relies on the eigenvalue system, it is not only sensitive to outliers and perturbations, but has a tendency to select only global features. Since the important features for the image data are often characterized by local information such as edges and spikes, PCA does not provide good solutions to such problems. Also solving an eigenvalue system usually requires high cost in its computation. In this paper, the original data is transformed with 2D wavelet packet bases and the best discriminant basis is searched, from which relevant features are selected. In contrast to PCA solutions, the fast selection of detailed features as well as global features is possible by virtue of the good properties of wavelets. Experiment results on the recognition rates of PCA and our approach are compared to show the performance of the proposed method.

Assessment of seasonal variations in water quality of Brahmani river using PCA

  • Mohanty, Chitta R.;Nayak, Saroj K.
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of river pollution due to natural or anthropogenic inputs of point and non-point sources. In this study, surface water quality data for 15 physico-chemical parameters collected from 7 monitoring stations in a river during the years from 2014 to 2016 were analyzed. The principal component analysis technique was employed to evaluate the seasonal correlations of water quality parameters, while the principal factor analysis technique was used to extract the parameters that are most important in assessing seasonal variations of river water quality. Analysis shows that a parameter that is most important in contributing to water quality variation for one season may not be important for another season except alkalinity, which is always the most important parameters in contributing to water quality variations for all three seasons.

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.