The purpose of this paper is to show a way for extracting the core input and output variable in Korean seaports by using principal component analysis and DEA(data envelopment analysis). Two inputs(birthing capacity, and cargo handling capacity) and three outputs(export cargo handling amount, import cargo handling amount, and number of ship calls), and three cross sectional data(1995, 2000, and 2004) for 26 Korean seaports are considered for measuring the efficiencies of 21 DEA models. 21 models can be treated as variables and efficiencies as observations for extracting the core inputs and outputs variables by using principal component analysis. An empirical main result indicates that core input variable is cargo handling capacity, and core output is the number of ship calls. The Korean seaport authority can adopt the DEA and principal component analysis for deciding the development and investment to each seaport.
This study aims to identify the limiting nutrient for algal growth in the Geum River and the significant pollutant sources from the tributaries affecting the water quality and to provide a management alternative for an improvement of water quality. An eight-year of daily data (2013~2020) were collected from the Water Environment Information System (water.nier.go.kr) and Water Resources Management Information System (wamis.go.kr). 14 water quality variables were analyzed at five water quality monitoring stations in the Geum River (WQ1-WQ5). In the Geum River, the water quality variables, especially Chl-a vary greatly in downstream of the river. In the open weir gate operation, TP (total phosphorus) and water temperature greatly influence the growth of algae in downstream of the river. A correlation analysis was used to identify the relationship between variables and investigate the factor affecting algal growth in the Geum River. At the downstream station (WQ5), TP and Temp have shown a strong correlation with Chl-a, indicating they significantly influence the algal bloom. The principal component analysis (PCA) was applied to identify and prioritize the major pollutant sources of the two major tributaries of the river, Gab-cheon and Miho-cheon. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant, urban, and agricultural pollutions pollution are identified as significant pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. PCA seems to be effective in identifying water pollutant sources for the Geum River and its tributaries in detail and thus can be used to develop water quality management strategies.
Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.
The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.
Journal of Korea Society of Digital Industry and Information Management
/
v.16
no.4
/
pp.67-74
/
2020
As the information age develops, Online education and Non-face-to-face work are becoming common. Telecommuting such as tele-education and video conferencing through the application of information technology is also becoming common due to the COVID-19. Unexpected information leakage can occur online when the company conducts work remotely or holds meetings. A system to authenticate users is needed to reduce information leakage. In this study, there are various ways to authenticate remote access users. By applying burn authentication using a biometric system, a method to identify users is proposed. The method used in the study was studied the main component analysis method, which recognizes several characteristics in facial recognition and processes interrelationships. It proposed a method that can be easily utilized without additional devices by utilizing a camera connected to a computer by authenticating the user using the shape and characteristics of the face by using the PCA method.
The simple and accurate method was established for the simultaneous determination of (-)-menthone and (-)-menthol in Menthae herba obtained from Korea and China. A quantitative analysis was performed with a gas chromatography-flame ionization detector and reference compounds were separated on a capillary HP-Innowax column (30 m $\times$ 0.23 mm, 0.50 ${\mu}m$, Agilent, MA, USA). The correlation coefficients of the compounds showed good linearity ($r^2$ > 0.9997) over the linear range. The precision, repeatability and stability showed less than 1.7% of relative standard deviation (RSD) values for two compounds. Recovery rates were within the range of 95.72 - 103.76%. The method was applied successfully to analyze 15 samples of Menthae herba and achieved sufficient and specific separation of reference compounds. The principal component analysis (PCA) exhibited the classification of 15 samples according to their locations of origin.
Journal of the Korea Society of Computer and Information
/
v.23
no.12
/
pp.21-26
/
2018
As the large amount of data can be efficiently stored, the methods extracting meaningful features from big data has become important. Especially, the techniques of converting high- to low-dimensional data are crucial for the 'Data visualization'. In this study, principal component analysis (PCA; linear dimensionality reduction technique) and Isomap (non-linear dimensionality reduction technique) are introduced and applied to neural big data obtained by the functional magnetic resonance imaging (fMRI). First, we investigate how much the physical properties of stimuli are maintained after the dimensionality reduction processes. We moreover compared the amount of residual variance to quantitatively compare the amount of information that was not explained. As result, the dimensionality reduction using Isomap contains more information than the principal component analysis. Our results demonstrate that it is necessary to consider not only linear but also nonlinear characteristics in the big data analysis.
The emerging notion of data stream has brought many new challenges to the research communities as a consequence of its conceptual difference with conventional concepts of just data. One typical example is data stream processing in sensor networks. The range of data processing considerations in a sensor network is very wide, from physical resource restrictions such as bandwidth, energy, and memory to the peculiarities of query processing including continuous and specific types of queries. In this paper, as one of the physical constraints in data stream processing, we consider the problem of limited memory and propose a new scheme for data stream reduction based on the Principal Component Analysis (PCA) technique. PCA can transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables. We adapt PCA for the data stream of a sensor network assuming the cooperation of a query engine (or application) with a network base station. Our method exploits the spatio-temporal correlation among multiple measurements from different sensors. Finally, we present a new framework for data processing and describe a number of experiments under this framework. We compare our scheme with the wavelet transform and observe the effect of time stamps on the compression ratio. We report on some of the results.
본 논문에서는 얼굴 요소의 자연적 특징과 PCA(Principal Component Analysis)를 융합한 얼굴인식 알고리즘을 소개한다. 지금까지 PCA 를 비롯한 다양한 얼굴인식 알고리즘이 소개되었지만, 얼굴영상을 하나의 '신호'혹은 '벡터'로 간주하여 이를 수학적 접근법으로 풀이하는 방법이 대부분이었다. 이에 본 논문에서는 템플릿 정합 기법을 이용하여 눈썹, 눈, 턱 등을 형태에 따라 분류하는 특징 분류기를 통하여 그룹을 나누고, 각 그룹별로 PCA 분류를 진행하는 2 단계 알고리즘을 구현하였다. 이를 CMU-PIE 데이터베이스를 이용해 검증하고, 실험 결과를 논의하였다.
This study was Performed to classify the acoustic emission(AE) signal due to surface cracking and moisture movement in the flat-sawn boards of oak(Quercus Variablilis) during drying using the principal component analysis(PCA) and artificial neural network(ANN). To reduce the multicollinearity among AE parameters such as peak amplitude, ring-down count event duration, ring-down count divided by event duration, energy, rise time, and peak amplitude divided by rise time and to extract the significant AE parameters, correlation analysis was performed. Over 96 of the variance of AE parameters could be accounted for by the first and second principal components. An ANN analysis was successfully used to classify the Af signals into two patterns. The ANN classifier based on PCA appeared to be a promising tool to classify the AE signals from wood drying.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.