• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.032 seconds

A Multi-Resolution Distance Measure Using Grey Block Distance Algorithms for Principal Component Analysis (주성분분석에서의 제안된 GBD 알고리즘을 이용한 다중해상도 거리 측정)

  • Hong, Jun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2671-2673
    • /
    • 2002
  • 본 논문에서는 주성분분석(principal component analysis; 이하 PCA)기법을 이용, 이차원 영상을 분류하여 다중해상도에서 기존의 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 결과로부터 기존의 GBD 알고리즘에 비하여 상대적 식별이 더 용이함을 확인하였다.

  • PDF

A Comparative Study on Isomap-based Damage Localization (아이소맵을 이용한 결함 탐지 비교 연구)

  • Koh, Bong-Hwan;Jeong, Min-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Text Summarization using PCA and SVD (주성분 분석과 비정칙치 분해를 이용한 문서 요약)

  • Lee, Chang-Beom;Kim, Min-Soo;Baek, Jang-Sun;Park, Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.725-734
    • /
    • 2003
  • In this paper, we propose the text summarization method using PCA (Principal Component Analysis) and SVD (Singular Value Decomposition). The proposed method presents a summary by extracting significant sentences based on the distances between thematic words and sentences. To extract thematic words, we use both word frequency and co-occurence information that result from performing PCA. To extract significant sentences, we exploit Euclidean distances between thematic word vectors and sentence vectors that result from carrying out SVD. Experimental results using newspaper articles show that the proposed method is superior to the method using either word frequency or only PCA.

Content-Based Retrieval System Design over the Internet (인터넷에 기반한 내용기반 검색 시스템 설계)

  • Kim Young Ho;Kang Dae-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.471-475
    • /
    • 2005
  • Recently, development of digital technology is occupying a large part of multimedia information like character, voice, image, video, etc. Research about video indexing and retrieval progresses especially in research relative to video. This paper proposes the novel notation in order to retrieve MPEG video in the international standards of moving picture encoding For realizing the retrieval-system, we detect DCT DC coefficient, and then we obtain shot to apply MVC(Mean Value Comparative) notation to image constructed DC coefficient. We choose the key frame for start-frame of a shot, and we have the codebook index generating it using feature of DC image and applying PCA(principal Component Analysis) to the key frame. Also, we realize the retrieval-system through similarity after indexing. We could reduce error detection due to distinguish shot from conventional shot detection algorithm. In the mean time, speed of indexing is faster by PCA due to perform it in the compressed domain, and it has an advantage which is to generate codebook due to use statistical features. Finally, we could realize efficient retrieval-system using MVC and PCA to shot detection and indexing which is important step of retrieval-system, and we using retrieval-system over the internet.

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

PCA-based Variational Model Composition Method for Roust Speech Recognition with Time-Varying Background Noise (시변 잡음에 강인한 음성 인식을 위한 PCA 기반의 Variational 모델 생성 기법)

  • Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2793-2799
    • /
    • 2013
  • This paper proposes an effective feature compensation method to improve speech recognition performance in time-varying background noise condition. The proposed method employs principal component analysis to improve the variational model composition method. The proposed method is employed to generate multiple environmental models for the PCGMM-based feature compensation scheme. Experimental results prove that the proposed scheme is more effective at improving speech recognition accuracy in various SNR conditions of background music, compared to the conventional front-end methods. It shows 12.14% of average relative improvement in WER compared to the previous variational model composition method.

Characteristics of Shelf-life of Soybean Curd by Electronic Noses - Using PCA and cluster analysis (전자코를 이용한 두부의 저장특성 분석 주성분 분석과 군집분석을 이용하여 -)

  • 김성민;노봉수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.241-248
    • /
    • 2002
  • An electronic noses system including six metal oxide sensors was used to predict the characteristics of shelf-life of soybean curd. Soybean curd was stored at two different temperatures defined as low temperature(5$\^{C}$) and high temperature(25$\^{C}$). Resistance changes of the sensors were measured 13 times for 19 days at low temperature and 19 times for 120 hours at high temperature. Three different analytical methods such as graphical analysis(GA), principal component analysis(PCA), and cluster analysis(CA) were used to analyze sensors outputs. The ratio of resistance was decreased according to increasement of shelf-life. Using PCA it was possible to predict freshness and shelf-life time of soybean curds. Also, using CA it was possible to simplify an electronic nose system. Electronic nose system could be an efficient method to predict shelf-life and to evaluate quality in foods.

Varietal Classification by Multivariate Analysis on Quantitative Traits in Pecan

  • Shin, Dong-Young;Nou, Ill-Sup
    • Plant Resources
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 1999
  • Twenty two varieties of pecan including wild types were classified based on 6 characters measured by principal component analysis score distance. The results are summarized as fellow. Twenty two varieties were classified into 5 groups based in PCA score distance. Five groups were distinctly characterized by many morphological characters. Total variation could be explained by 51%, 95%, 99% with first, third and fifth principal components respectively. Varimax rotation of the factor loading of the first factors indicated that the first component was highly loaded with leaf characters, the second component with fruit characters, but fruit length was negative loaded. The second, the third and the fourths groups of cultivars had very close genetic parentage similarity.

  • PDF