• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.031 seconds

Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials (주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류)

  • Kim, Young-Bum;Shin, Duk-Ha;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2014
  • In this paper, we propose a ultra sound inspection technique for automatic defect detection and classification in aircraft composite materials. Using local maximum values of ultra sound wave, we choose peak values for defect detection. Distance data among peak values are used to construct histogram and to determine surface and back-wall echo from the floor of composite materials. C-scan image is then composed through this method. A threshold value is determined by average and variance of the peak values, and defects are detected by the values. PCA(principal component analysis) and QDA(quadratic discriminant analysis) are carried out to classify the types of defects. In PCA, 512 dimensional data are converted into 30 PCs(Principal Components), which is 99% of total variances. Computational cost and misclassification rate are reduced by limiting the number of PCs. A decision boundary equation is obtained by QDA, and defects are classified by the equation. Experimental result shows that our proposed method is able to detect and classify the defects automatically.

Multiple component neural network architecture design and learning by using PCA (PCA를 이용한 다중 컴포넌트 신경망 구조설계 및 학습)

  • 박찬호;이현수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.107-119
    • /
    • 1996
  • In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.

  • PDF

Novel assessment method of heavy metal pollution in surface water: A case study of Yangping River in Lingbao City, China

  • Liu, Yingran;Yu, Hongming;Sun, Yu;Chen, Juan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The primary purpose of this research is to understand those elements that define heavy metals contamination and to propose a novel assessment method based on principal component analysis (PCA) in the Yangping River region of Lingbao City, China. This paper makes detailed calculations regarding such factors the single-factor assessment ($P_i$) and Nemerow's multi-factor index ($P_N$) of heavy metals found in the surface water of the Yangping River. The maximum values of $P_i$ (Cd) and $P_i$ (Pb) were determined to be 892.000 and 113.800 respectively. The maximum value of $P_N$ was calculated to be 639.836. The results of Pearson's correlation analysis, hierarchical cluster analysis, and PCA indicated heavy metal groupings as follows: Cu, Pb, Zn and As, Hg, Cd. The PCA-based pollution index ($P_{an}$) of samplings was subsequently calculated. The relative coefficient square was valued at 0.996 between $P_{an}$ and $P_N$, which indicated that $P_{an}$ is able to serve as a new heavy metal pollution index; not only this index able to eliminate the influence of the maximum value of $P_i$, but further, this index contains the principal component elements needed to evaluate heavy metal pollution levels.

Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification (화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용)

  • Seo, Chang-Woo;Zhao, Mei-Hua;Lim, Young-Hwan;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA (PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선)

  • Kim, Onecue;Kang, Dong-Joong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.820-828
    • /
    • 2013
  • Extracting unique features from an image is a fundamental issue when making panorama images, acquiring stereo images, recognizing objects and analyzing images. Generally, the task to compare features to other images requires much computing time because some features are formed as a vector which has many elements. In this paper, we present a method that compares features after reducing the feature dimension extracted from an image using PCA(principal component analysis) and sorting the features in a linked list. SURF(speeded up robust features) is used to describe image features. When the dimension reduction method is applied, we can reduce the computing time without decreasing the matching accuracy. The proposed method is proved to be fast and robust in experiments.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

STUDY OF SPECTRAL ENERGY DISTRIBUTION OF GALAXIES WITH PRINCIPAL COMPONENT ANALYSIS

  • Kochi, Chihiro;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Yano, Kenichi;Baba, Shunsuke
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.209-211
    • /
    • 2017
  • We performed Principle Component Analysis (PCA) over 264 galaxies in the IRAS Revised Bright Galaxy Sample (Sanders et al., 2003) using 12, 25, 60 and $100{\mu}m$ flux data observed by IRAS and 9, 18, 65, 90 and $140{\mu}m$ flux data observed by AKARI. We found that (i)the first principle component was largely contributed by infrared to visible flux ratio, (ii)the second principal component was largely contributed by the flux ratio between IRAS and AKARI, (iii)the third principle component was largely contributed by infrared colors.

PCA vs. ICA for Face Recognition

  • Lee, Oyoung;Park, Hyeyoung;Park, Seung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.873-876
    • /
    • 2000
  • The information-theoretic approach to face recognition is based on the compact coding where face images are decomposed into a small set of basis images. Most popular method for the compact coding may be the principal component analysis (PCA) which eigenface methods are based on. PCA based methods exploit only second-order statistical structure of the data, so higher- order statistical dependencies among pixels are not considered. Independent component analysis (ICA) is a signal processing technique whose goal is to express a set of random variables as linear combinations of statistically independent component variables. ICA exploits high-order statistical structure of the data that contains important information. In this paper we employ the ICA for the efficient feature extraction from face images and show that ICA outperforms the PCA in the task of face recognition. Experimental results using a simple nearest classifier and multi layer perceptron (MLP) are presented to illustrate the performance of the proposed method.

  • PDF

Speaker Recognition using PCA in Driving Car Environments (PCA를 이용한 자동차 주행 환경에서의 화자인식)

  • Yu, Ha-Jin
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.103-106
    • /
    • 2005
  • The goal of our research is to build a text independent speaker recognition system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severally degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(Principal component analysis) without dimension reduction can greatly increase the performance to a level close to matched condition. The error rate is reduced more by the proposed augmented PCA, which augment an axis to the feature vectors of the most confusable pairs of speakers before PCA

  • PDF