• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.04 seconds

A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method (Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구)

  • Kim, Seong-Il;Jeong, Seung-Yong;Koo, Ja-Yoon;Lim, Yun-Sok;Koo, Sun-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF

Chemical Compositions in Rainwater at Hiroshima Prefecture, Japan

  • Kim, Do-Hoon;Takeda, Kazuhiko;Sakugawa, Hiroshi;Lee, Jin-Sik
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • From May 1999 to July 2000, concentration of 17 metals (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sr, V, Zn), 4 ions (${NH_4}^+$, $Cl^-$, ${NO_3}^-$, ${SO_4}^{2-}$) and pH in rainwater were investigated. The volume-weighted mean concentrations (VWM) of ${NO_3}^-$ and ${SO_4}^{2-}$ were 16.0 and $17.0{\mu}mol\;L^{-1}$. The average pH was 4.53, which ranged from 3.83 to 6.06. The characteristic variations of these species were investigated in terms of the source of these species by principal component analysis (PCA) and interelement correlation coefficients. The elements were classified into three categories: anthropogenic source (Cd, Cu, Fe, Ni, Pb, V, Zn, ${NH_4}^+$, ${NO_3}^-$, ${SO_4}^{2-}$ and $H^+$), soil and crust dust (Al, Ba, Ca, Fe, Mn) and sea salts (Mg, Na, $Cl^-$). In addition, we compared the concentrations in rainwater, which were taken on the same day in three sites (Higashi-Hiroshima, an urban-facing area and a mountain-facing area of Mt. Gokurakuji) in order to examine the regional effect against the concentrations in them. At the urban-facing area of Mt. Gokurakuji, the concentrations of chemical compositions were higher than other areas.

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

Efficient Primary-Ambient Decomposition Algorithm for Audio Upmix (오디오 업믹스를 위한 효율적인 Primary-Ambient 분리 알고리즘)

  • Baek, Yong-Hyun;Lee, Keun-Sang;Jeon, Se-Woon;Lee, Seokpil;Park, Young-Choel
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.160-163
    • /
    • 2012
  • 업믹스(Upmix) 기술은 홈시어터와 같은 다채널 스피커 재생 환경에서 콘텐츠의 대부분을 차지하는 스테레오 음원을 다채널 환경에 재생하기 위한 채널 포맷 변환 기술을 말한다. 업믹스를 위한 전처리 단계로서 특정 방향으로 패닝된 주(primary)성분과 잔향 및 배경음과 같은 Ambient 성분을 분리하는 과정이 필요하다. Primary와 Ambient를 분리하기 위한 방법으로 채널 간의 상관도, 적응 필터 및 주성분 분석법(principal component analysis, PCA)이 널리 이용되고 있다. 이에 본 논문에서는 비교적 정확하게 Primary와 Ambient를 분리한다고 알려진 주성분 분석법을 이용하여 신호를 분리해 내고 이 때 주성분 분석법이 가지는 문제점을 해결한 향상된 Primary-Ambient 분리 알고리즘을 제안하였다. 제안된 알고리즘은 분리 성능이 Primary 성분이 패닝된 각도에 영향을 받지 않으며 또한 Primary 성분에 섞인 잔여 Ambient를 제거함으로써 기존의 주성분 분석법 보다 더 정확하게 Primary와 Ambient를 분리 할 수 있고 상관성이 없는 Ambient 특성을 좀 더 정확하게 반영한다.

  • PDF

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF

Robust Face detection using Geometric Luminance Distribution Mask and color model under illumination variations (다양한 조명 조건에서의 기하학적 밝기분포 마스크와 색상모델을 이용한 얼굴검출)

  • Cheon, Jun-Ho;Na, Sang-Il;Lee, Jung-Ho;Shin, Min-Chul;Jeong, Dong-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.913-915
    • /
    • 2005
  • 임의의 영상에서 얼굴을 검출하는 것은 얼굴을 인식하는데 있어서 선행되어야 할 필수과정이다. 본 논문은 조명의 변화가 심한 컬러영상에서 얼굴을 검출하는 것을 목적으로 한다. 본 논문은 기존의 기하학적 밝기분포 마스크만을 사용한 방법이 조명 변화에 취약한 단점을 보완하는데 중점을 두었다. 히스토그램 평활화(Histogram Equalization : HE)와 감마 크기 보정 (Gamma Intensity Correction : GIC) 방법을 이용해서 조명에 대한 간섭을 줄인 후, 영상 전체에서 피부 영역을 추출하고 이어서 눈 후보들을 검출한다. 검출된 눈 후보들로부터 기하학적 밝기분포 마스크를 적용하여 효과적으로 얼굴 후보들을 찾을 수 있고, 이렇게 찾아진 얼굴 후보들은 주성분분석법(Principal Component Analysis : PCA)를 이용해서 얼굴인지 여부를 판별하게 된다. 본 알고리즘은 조명 밝기 등으로 인해 검출률이 떨어졌던 단점을 보완할 수 있었고, 향후 얼굴 검출 분야에 있어서도 활용 가치가 있을 것으로 생각된다.

  • PDF

Minimization of Off-Flavor Occurrence During the Storage of Modified Atmosphere Packaged Pleurotus ostreatus

  • Lee, Eun-Kyoung;Noh, Bong-Su;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.222-228
    • /
    • 2007
  • This study was conducted to investigate the minimization of off-flavor occurrence and the maintenance of high quality in modified atmosphere packaged Pleurotus ostreatus during the storage. There are 4 treatments used to preserve high quality and for deodorization of MAP mushroom: Artemisia princeps, Artemisia capillaries, green tea and activated charcoal. The mushrooms were packed in polyethylene film with each treatment and were stored at 5 and $20^{circ}C$. No difference was observed in weight loss, $CO_2\;and\;O_2$ concentration, or color of mushrooms packed with or without treatment. However, the principal component analysis (PCA), electronic nose, revealed differences in off-flavor occurrence between control (MAP mushroom without treatment) and treatment groups at $5^{\circ}C$. This result suggested that Artemisia princeps and Artemisia capillaries was masking the off-flavor in MAP mushroom because the unique flavor of them was strongly revealed and green tea and activated charcoal might have a role of removing the off-flavor by adsorbing ethanol and acetaldehyde, which is known to cause off-flavor. The sensory test showed that Artemisia princeps and Artemisia capillaries dough treatment inhibited microbial growth.

One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal (단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류)

  • Cho, Min-Young;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

Face recognition in conjunction between GWT coefficients' energy and original image (GWT 계수 에너지와 원영상 결합을 이용한 얼굴 인식)

  • Han Jeong-Hoon;Hong Xiao-Fan;Kim Woo-Saeng
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.304-306
    • /
    • 2006
  • 본 논문에서는 GWT(Gabor Wavelet Transform) 계수 에너지와 원 영상간의 영상 결합을 수행한 영상을 주성분 분석법(Principal Component Analysis)에 적용하여 얼굴 인식을 하는 방법을 제안한다. GWT는 가버 함수의 크기 변화와 방향 변화에 의해 생성된다. 따라서 GWT는 다양한 크기 변화와 방향 변화를 가지는 변환으로 특정 주파수 성분과 방향성을 가지는 영상 구조가 어디에 있는지의 지역적 정보를 효과적으로 표현할 수 있는 변환으로 알려져 있다. GWT를 통해 나온 계수 에너지를 추출하고 원 영상에 더하여 지역적 특성을 크게 만든 후에 통계적 방법 중 가장 많이 사용되어지고 검증을 받은 PCA를 사용하여 인식한다. GWT 계수의 에너지는 얼굴 윤곽선, 눈과 입, 얼굴과 머리의 경계 등 색감의 급격한 변화를 나타내는 곳의 정보를 표현을 해주기 때문에 특징점 추출에 사용되고 있지만 이를 전역적으로 이용하여 인식하는 방법에 관한 연구가 이루어지지 않고 있다. 본 논문에서는 에너지 값만으로 전체 얼굴 영상의 세부적 표현을 할 수 없기 때문에 원 영상과의 l:l 비율의 영상 결항을 한 후 얼굴 인식 처리에 사용한다. 이 영상을 얼굴인식에 사용하였을 때원본 영상을 사용하였을 때보다 오인식이 줄었다.

  • PDF

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.