• Title/Summary/Keyword: PC wall panel

Search Result 28, Processing Time 0.024 seconds

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Seismic Performance of Non-ductile Reinforced Concrete Frames with Precast ECC Wall Panels (프리캐스트 ECC 벽판으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kim, Ji-Hyeon;Jo, Seong-Pill;Seo, Soo-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.105-112
    • /
    • 2019
  • This study was conducted to examine experimentally the seismic performance of non-ductile reinforced concrete (RC) frames retrofitted with precast(PC) engineered cementitious composite (ECC) wall panels. The seismic performance was investigated through cyclic load tests on RC frame with different aspect ratio (hw/lw = 2 and 3) and installation position (center and both side of RC frame) of the PC ECC wall panels. Test results indicated that the seismic strengthening method using PC ECC wall panels is effective to improve significantly the strength, stiffness and energy dissipation capacity of non-ductile RC frame. Based on test results, it can be recommended to install PC ECC wall panel at the center of RC frame for improving the strength and to install slender wall panels at both side of RC frame for increasing ductility.

Development of Precast Concrete Structural Wall which Can Assure Reliable Seismic Performance (내진성능이 개선된 PC구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.459-460
    • /
    • 2009
  • The purpose of this study is to develop precast concrete structural wall panel that can assure reliable seismic performance. In the previous study, the connection of precast concrete structural wall has some problems in seismic performance. Therefore, this research proposed the precast concrete structural walls which can improve seismic performance. And their seismic performance was verified through lateral loading experiment.

  • PDF

Development of Hybrid Panel with C-shaped Steel Beam at Top and Bottom of Precast Concrete Wall (프리캐스트 콘크리트 벽체의 상하부에 C형강 보가 결합된 복합 패널의 개발)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.435-442
    • /
    • 2017
  • A lateral load resisting system is a necessary structural element for the mid- to high-rise modular buildings and concrete cores are known as the most typical lateral load resisting systems in 10- to 20-story modular buildings. It is difficult to construct a concrete core simultaneously with the installation and finishing work of modular units because concrete placed using wet methods might contaminate or destroy the modular unit. Therefore, we have developed a hybrid PC (precast concrete) panel construction method that can construct a concrete core together with the installation of modular units. The hybrid PC panel is a load-bearing element in which a pair of C-shaped beams are combined at the top and bottom of a concrete wall. Concrete cores can be constructed by dry method to connect the hybrid PC panels with bolts. In this study, the details and connection of hybrid PC panels are improved to have the lateral performance comparable to reinforced concrete structural walls and are verified through FE analysis.

Wall Charge Distribution In the Address Period of AC Plasma Display Panel (AC PDP의 addressing 기간중의 벽전하 분포에 관한 연구)

  • Lee, Ki-Bum;Kim, Dong-Hyun;Kang, Dong-Sik;Park, Chung-Hoo;Cho, Chung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1830-1833
    • /
    • 2000
  • The relationships between driving voltage and the wall charge distribution in the address period of surface discharge type AC Plasma Display Panel have been investigated. The quantity of wall charge on each electrode are detected simultaneously from the electrode current after applying only one addressing discharge pulse. The wall charge Qy on the scan electrode Y is nearly the sum of Qx on the address electrode X and Qz on the sustain electrode 2. The Qy increased with the driving voltage regardless of the kind of electrode, whereas the address time Td decreased, Qz and Qy are increased considerably with the blocking voltage Vz, whereas Qx is decreased. The increase rate of Qx, Qy and Qz for increase in Vz was $-13{\times}10^{-2}$(pc/Vz), and $60{\times}10^{-2}$(pc/Vz) and $70{\times}10^{-2}$(pc/Vz), respectively.

  • PDF

Analysis on the Flexural Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 휨 거동 분석)

  • Son, Guk-Won;Yu, Sung-Young;Lim, Cheol-Woo;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.56-66
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Seismic resistant test of anchored and welded steel plate connections manifested an average of 2.8 times increase in the maximum loading (average 591.8 kN) in comparison to unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.4% and 2.7%. An analytical study was performed while assuming the RC column on the right side and the vertical element of the reinforced PC panel to behave in completely composite manner and the RC column on the left side and PC panel to behave in completely non-composite manner when loading was exerted from upper right end of RC frame of specimen to its left side. It was found with the assumptions that the overall flexural behavior in principle agreed with the experimental result.

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

An Experimental Study on the Sound Insulation Characteristics of Heavyweight Walls (중량벽체의 차음특성에 관한 실험적 연구)

  • 김선우;이태강;송민정
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1078-1085
    • /
    • 1998
  • This study is carried out to investigate the characteristics of sound insulation performances for masonry walls. PC walls and ALC walls. For these purposes. 17 types of masonry walls were selected and tested in accordance with KS F 2808 at reverberation room The sound insulation performance of 8" cement block walls are graded with D-45 ∼ D-55 which are to be evaluated very favorable grade. 4" cement block walls are D-30 ∼ D-40. 1 B cement brick walls are D-40∼D-50 favorable grade. 0.5 B brick walls are D-30∼D-45. 150 mm PC wall is D-50. and ALC walls(150 mm, 200 mm) are D-30∼D-45.

  • PDF