• Title/Summary/Keyword: PBT assessment

Search Result 12, Processing Time 0.019 seconds

The Study on the Marine Eco-toxicity and Environmental Risk of Treated Discharge Water from Ballast Water Management System using Plasma and MPUV (Plasma와 MPUV를 이용한 평형수관리장치의 배출수에 대한 해양생태독성 및 해양환경위해성에 관한 연구)

  • Shon, M.B.;Son, M.H;Lee, J.;Lee, S.U.;Lee, J.D.;Moon, C.H.;Kim, Y.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.281-291
    • /
    • 2012
  • In this study, WET (whole effluent toxicity) test with Skeletonema costatum, Tigriopus japonicus and Paralichthys olivaceus and ERA (environmental risk assessment) were conducted to assess the unacceptable effect on marine ecosystem by emitting the treated discharge water from 'ARA Plasma BWTS' BWMS (ballast water management system) using filtration, Plasma and MPUV module. 34 psu treated discharge water from ARA Plasma BWTS shown slight chronic toxicity effect on the P. olivaceus ($7d-LC_{50}{\Rightarrow}100.00%$ treated discharge water, $7d-LC_{25}{\Rightarrow}85.15%$ treated discharge water). Bromobenzene, chlorobenzene and 4-chlorotoluene in 34 psu treated discharge water from ARA Plasma BWTS were higher than in the background original content of seawater. The PECs (predictive environmental concentrations) of bromobenzene, chlorobenzene and 4-chlorotoluene calculated by MAMPEC (marine antifoulant model to predict environmental concentrations) program (ver. 3.0) were 3.34E-03, 2.10E-03 and 1.73E-03 ${\mu}g\;L^{-1}$, respectively and PNECs (predicted no effect concentrations) of them were 1.6, 0.5 and 1.9 ${\mu}g\;L^{-1}$. The PEC/PNEC ratio of bromobenzene, chlorobenzene and 4-chlorotoluene did not exceed one and 3 substances did not consider as persistence, bioaccumulative and toxic. Therefore, it was suggested that treated discharge water from ARA Plasma BWTS did not pose unacceptable effect on marine ecosystem.

A Study on Marine Ecological Risk Assessment of Ballast Water Management Technology Using the Sodium Dichloroisocyanurate (NaDCC) Injection Method (이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수 처리기술의 해양생태위해성평가에 대한 연구)

  • Kim, Tae Won;Moon, Chang Ho;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Ballast water treated by sodium dichloroisocyanurate (NaDCC) injection method in ballast water management system (BWMS) contains reactive bromine, chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on the marine environment. WET testing was carried out for eight marine and fresh water organisms, i.e. diatom, Skeletonema costatum, Navicula pelliculosa, green algae, Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer, Brachionus plicatilis, Brachionus calyciflorus and fish, Cyprinodon variegatus, Pimephales promelas. The WET test revealed that diatom and green algae were the only organisms that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50 % (EC50) values of 25.0 %, 50.0 % and over 100.0 %, respectively, in seawater conditions. In contrast, rotifer and fish showed no toxicities to the effluent in the all salinity conditions. Meanwhile, chemical analysis revealed that the BWMS effluent contained total of 25 DBPs such as bromate, isocyanuric acid, formaldehyde, chloropicrin, trihalomethanes (THMs), halogenated acetonitriles (HANs) and halogenated acetic acids (HAAs). Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the all DBPs did not exceed 1.0 for general harbour environments, but isocyanuric acid, tribromomethane, chloropicrin and monochloroacetic acid exceed 1.0 for near ship environments. However, when NOEC (25.0%) of the WET test results where actual effluent was applied, it was concluded that the NaDCC injection method did not have unacceptable ecological risks to the general harbor including near ship environments.