• Title/Summary/Keyword: PBIL

Search Result 11, Processing Time 0.018 seconds

A Compact Stereo Matching Algorithm Using Modified Population-Based Incremental Learning (변형된 개체기반 증가 학습을 이용한 소형 스테레오 정합 알고리즘)

  • Han, Kyu-Phil;Chung, Eui-Yoon;Min, Gak;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.103-112
    • /
    • 1999
  • Genetic algorithm, which uses principles of natural selection and population genetics, is an efficient method to find out an optimal solution. In conventional genetic algorithms, however, the size of gene pool needs to be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental learning based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since th proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even though the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF