• Title/Summary/Keyword: PAVAN

Search Result 28, Processing Time 0.02 seconds

Settlement analysis of pile cap with normal and under-reamed piles

  • Kumar, Madisetti Pavan;Raju, P. Markandeya;Jasmine, G. Vincent;Aditya, Mantini
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.525-535
    • /
    • 2020
  • The use of pile foundations has become more popular in recent years, as the combined action of the pile cap and the piles can increase the bearing capacity, reduce settlement, and the piles can be arranged so as to reduce differential deflection in the pile cap. Piles are relatively long, slender members that transmit foundation loads through soil strata of low bearing capacity to deeper soil or rock strata having a high bearing capacity. In this study analysis of pile cap with considering different parameters like depth of the pile cap, width and breadth of the pile cap, type of piles and different types of soil which affect the behaviour of pile cap foundation is carried out by using Finite Element Software ANSYS. For understanding the settlement behaviour of pile cap foundation, parametric studies have been carried out in four types of clay by varying pile cap dimensions with two types of piles namely normal and under-reamed piles for different group of piles. Furthermore, the analysis results of settlement and stress values for the pile cap with normal and under-reamed piles are compared. From the study it can be concluded that settlement values of pile cap with under-reamed pile are less than the settlements of pile cap with normal pile. It means that the ultimate load bearing capacity of pile cap with under-reamed piles are greater than the pile cap with normal piles.

Perspective of Membrane Technology in Dairy Industry: A Review

  • Kumar, Pavan;Sharma, Neelesh;Ranjan, Rajeev;Kumar, Sunil;Bhat, Z.F.;Jeong, Dong Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1347-1358
    • /
    • 2013
  • Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.

Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites

  • Swain, Sarojini;Sharma, Ram Avatar;Patil, Sandip;Bhattacharya, Subhendu;Gadiyaram, Srinivasa Pavan;Chaudhari, Lokesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.267-272
    • /
    • 2012
  • Considering the properties of the carbon nano tubes (CNT), their inclusion into the polymer matrix vastly increases the properties of the resultant composite. However, this is not the case due to the poor interfacial adhesion of the CNT and the polymer matrix. The present approach focuses on increasing the interaction between the polymer matrix and the CNT through the chemical modification of the CNT resulting in allyl ester functionalized carbon nanotubes (ACNT) and silane functionalized carbon nano tubes (SCNT) which are capable of reacting with the polymer matrix during the curing reaction. The addition of ACNT/SCNT into unsaturated polyester resin (UPR) resulted in the improvement of the electrical properties of resulted nanocomposites in comparison to the CNT. The surface resistivity, volume resistivity, dielectric strength, dry arc resistivity, and the comparative tracking index of the nanocomposites were significantly improved in comparison to CNT. The chemical modification of CNT was confirmed via spectroscopy.

Natural radioprotectors and their impact on cancer drug discovery

  • Kuruba, Vinutha;Gollapalli, Pavan
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.265-275
    • /
    • 2018
  • Cancer is a complex multifaceted illness that affects different patients in discrete ways. For a number of cancers the use of chemotherapy has become standard practice. Chemotherapy is a use of cytostatic drugs to cure cancer. Cytostatic agents not only affect cancer cells but also affect the growth of normal cells; leading to side effects. Because of this, radiotherapy gained importance in treating cancer. Slaughtering of cancerous cells by radiotherapy depends on the radiosensitivity of the tumor cells. Efforts to improve the therapeutic ratio have resulted in the development of compounds that increase the radiosensitivity of tumor cells or protect the normal cells from the effects of radiation. Amifostine is the only chemical radioprotector approved by the US Food and Drug Administration (FDA), but due to its side effect and toxicity, use of this compound was also failed. Hence the use of herbal radioprotectors bearing pharmacological properties is concentrated due to their low toxicity and efficacy. Notably, in silico methods can expedite drug discovery process, to lessen the compounds with unfavorable pharmacological properties at an early stage of drug development. Hence a detailed perspective of these properties, in accordance with their prediction and measurement, are pivotal for a successful identification of radioprotectors by drug discovery process.

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.

Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-fat Pork Patties

  • Verma, Akhilesh K.;Chatli, Manish Kumar;Kumar, Devendra;Kumar, Pavan;Mehta, Nitin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.252-259
    • /
    • 2015
  • The present study was conducted to investigate the efficacy of sweet potato powder (SPP) and water as a fat replacer in low-fat pork patties. Low-fat pork patties were developed by replacing the added fat with combinations of SPP and chilled water. Three different levels of SPP/chilled water viz. 0.5/9.5% (T-1), 1.0/9.0% (T-2), and 1.5/8.5% (T-3) were compared with a control containing 10% animal fat. The quality of low-fat pork patties was evaluated for physico-chemical (pH, emulsion stability, cooking yield, $a_w$), proximate, instrumental colour and textural profile, and sensory attributes. The cooking yield and emulsion stability improved (p<0.05) in all treatments over the control and were highest in T-2. Instrumental texture profile attributes and hardness decreased, whereas cohesiveness increased compared with control, irrespective of SPP level. Dimensional parameters (% gain in height and % decrease in diameter) were better maintained during cooking in the low-fat product than control. The sensory quality attributes juiciness, texture and overall acceptability of T-2 and T-3 were (p<0.05) higher than control. Results concluded that low-fat pork patties with acceptable sensory attributes, improved cooking yield and textural attributes can be successfully developed with the incorporation of a combination of 1.0% SPP and 9.0% chilled water.

An Analytical Model of the First Eigen Energy Level for MOSFETs Having Ultrathin Gate Oxides

  • Yadav, B. Pavan Kumar;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2010
  • In this paper, we present an analytical model for the first eigen energy level ($E_0$) of the carriers in the inversion layer in present generation MOSFETs, having ultrathin gate oxides and high substrate doping concentrations. Commonly used approaches to evaluate $E_0$ make either or both of the following two assumptions: one is that the barrier height at the oxide-semiconductor interface is infinite (with the consequence that the wave function at this interface is forced to zero), while the other is the triangular potential well approximation within the semiconductor (resulting in a constant electric field throughout the semiconductor, equal to the surface electric field). Obviously, both these assumptions are wrong, however, in order to correctly account for these two effects, one needs to solve Schrodinger and Poisson equations simultaneously, with the approach turning numerical and computationally intensive. In this work, we have derived a closed-form analytical expression for $E_0$, with due considerations for both the assumptions mentioned above. In order to account for the finite barrier height at the oxide-semiconductor interface, we have used the asymptotic approximations of the Airy function integrals to find the wave functions at the oxide and the semiconductor. Then, by applying the boundary condition at the oxide-semiconductor interface, we developed the model for $E_0$. With regard to the second assumption, we proposed the inclusion of a fitting parameter in the wellknown effective electric field model. The results matched very well with those obtained from Li's model. Another unique contribution of this work is to explicitly account for the finite oxide-semiconductor barrier height, which none of the reported works considered.

Antioxidant and Antimicrobial Efficacy of Sapota Powder in Pork Patties Stored under Different Packaging Conditions

  • Kumar, Pavan;Chatli, Manish Kumar;Mehta, Nitin;Malav, Om Prakash;Verma, Akhilesh Kumar;Kumar, Devendra;Rathour, Manjeet
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.593-605
    • /
    • 2018
  • The present study was undertaken to assess the efficacy of sapota powder (SP) as natural preservatives and its better utilization in food processing with the incorporation of various levels of SP (2, 4, and 6%) by replacing lean meat. Based on the sensory attributes, pork patties with 4% incorporation of SP was found optimum and selected for further storage studies with control under aerobic and modified atmosphere packaging at refrigeration temperature ($4{\pm}1^{\circ}C$) for 42 days for assessing its antioxidant and antimicrobial efficiency. During entire storage period, indicators of lipid oxidative parameters such as thiobarbituric acid reactive substances (TBARS), free fatty acids (FFA) and peroxide value (PV) followed an increasing trend for control as well as treated products; however, treated product showed a significantly (p<0.05) lower value than control. A significantly lower (p<0.05) microbial count in treated patties than control was noted during entire storage. The sensory attributes are better retained in treated product as compared to control and even on $42^{nd}$ day, overall acceptability of treated patties was found to fall in moderately acceptable category (5.95 in aerobic packets and 5.91 in modified atmosphere packets). Therefore SP has potential to enhance antioxidant and antimicrobial properties of pork patties during storage.

Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model

  • Choi, Geun-Sik;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny;Kim, Ki-Hyun;Lee, Jin-Hong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.68-79
    • /
    • 2018
  • The Ki-Jang research reactor (KJRR), a new research reactor in Korea, is being planned to fulfill multiple purposes. In this study, as an assessment of the environmental radiological impact, we characterized the atmospheric dispersion and deposition of radioactive materials released by an unexpected incident at KJRR using the weather research and forecasting-mesoscale model interface program-California Puff (WRF-MMIF-CALPUFF) model system. Based on the reproduced three-dimensional gridded meteorological data obtained during a 1-year period using WRF, the overall meteorological data predicted by WRF were in agreement with the observed data, while the predicted wind speed data were slightly overestimated at all stations. Based on the CALPUFF simulation of atmospheric dispersion (${\chi}/Q$) and deposition (D/Q) factors, relatively heavier contamination in the vicinity of KJRR was observed, and the prevailing land breeze wind in the study area resulted in relatively higher concentration and deposition in the off-shore area sectors. We also compared the dispersion characteristics between the PAVAN (atmospheric dispersion of radioactive release from nuclear power plants) and CALPUFF models. Finally, the meteorological conditions and possibility of high doses of radiation for relatively higher hourly ${\chi}/Q$ cases were examined at specific discrete receptors.