• Title/Summary/Keyword: PATRAN

Search Result 90, Processing Time 0.02 seconds

Space Frame Integrated Design System based on PATRAN Database (PATRAN 데이타베이스를 기반으로 한 스페이스 프레임의 통합설계시스템)

  • Lee Jae Hong;Lee Joo Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.210-215
    • /
    • 1998
  • To design a space frame structure by the conventional method is not easy in practical sense since it is generally a three-dimensional complicated form, and stability and nonlinear problems are not easily checked in the design process. This paper describes two modules, the Model Generator which is based on PATRAN user interface that enables users to generate a complicated finite element model; the Optimum Design Module which analyzes output results of analysis program, and designs members of a space frame. The Model Generator is based on PCL while C++ language is used in the Optimum Design Module. Structural analysis is performed by using ABAQUS. All of these modules constitute Space Frame Integrated Design System. The Core of the system is PATRAN database, in which the Model Generator creates information of a finite element model. Then, PATRAN creates input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Dynamic Characteristic Analysis of Tilting Turret Systems Using Finite Element Modeling (유한요소 모델링을 이용한 틸팅터릿 시스템의 진동특성해석)

  • 정상화;김재열;김상석;나윤철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.60-70
    • /
    • 2001
  • In multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret unit is modeled by considering the element dividing, material proprties, and boundary conditions with PATRAN. Normal mode and frequency analysis of each structures such as saddle, cared, and turret are simulated by NASTRAN, for the purpose of developing the effective design. The results of mode analysis and frequency analysis are visualized with PATRAN, and the design method which can solve the resornance problem by eigenvalues and eigenvectors of each axis is developed as well.

  • PDF

FE Analysis of Movable Bearing Shoe and Hinged Bearing Shoe (입체요소를 이용한 가동받침과 고정받침의 유한요소해석)

  • 최창근;이태열;김태완;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.373-380
    • /
    • 1998
  • 3D finite element analyses of movable bearing shoe and hinged bearing shoe are performed. The finite element models are built using MSC/PATRAN and analyses are carried out using MSC/NASTRAN. Results are again completely processed using MSC/PATRAN. From the results of the analyses, trends of deformation and stress distribution are reviewed and important factors to consider in the design of bearing shoes are discussed. Furthermore optimum crowning amount for the roller of movable bearing shoe was determined according to the results of the analyses.

  • PDF

A Technique for Calculations of Power Flow in Structures Using MSC/NASTRAN and PCL (MSC/NASTRAN 및 PCL을 이용한 구조물 내의 진동 파워 흐름 해석 기법)

  • 홍진숙
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.303-313
    • /
    • 2001
  • The identification of power flow in dynamically loaded structures Is essential in the analysis of structure-borne noise. However there are no general purpose tools to estimate powers flow. To make matters worse. It is very difficult to measure it. The power flow can be formulated in terms of balance forces(ELFORCE) at each element and velocities at the associated node obtained with MSC/NASTHAN. In this paper the procedure which is consist of the computations of the balance forces of al1 elements and the velocities at all nodes using MSC/NASTRAN. The calculations of the power f1ow at each element using PCL(PATRAN Command Language) and the Preparation of post -processes is set UP.

  • PDF

A two-dimensional numerical simulation of the thermal and fluid flow in engine room (엔진룸 내의 열유체 유동의 2차원 수치시뮬레이션)

  • 유정열;윤홍열;이훈구
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 1992
  • The complex geometry of the engine room of a passenger car has been modelled two-dimensionally and the thermal and fluid flow therein have been analyzed by using a commercially available code, PATRAN/FLORAM$\mid$N. FLOTRAN adopts a finite element method with streamline upwind formulation for convective terms and the k-.epsilon. turbulence model to solve the three dimensional turbulent flow and heat transfer problems. Velocity vectors, pressure and temperature distributions have been obtained for various cases with different arrangements of license plate, underbody-covers and air dams. The results show that the numerical analysis using PATRAN/FLOTRAN can predict qualitatively well the practical phenomena.

  • PDF

ABAQUS를 이용한 O-링 밀봉 부의 설계민감도 분석기법 연구

  • 이방업;구송회;조원만;오광한
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.3-11
    • /
    • 1996
  • 본 연구는 고체 추진기관의 각종 밀봉 부에 많이 사용되는 O-링의 설계시 고려되는 각종 형상인자의 변화에 따른 O-링의 거동과 응력 상태를 분석하여 설계 최적조건을 찾기 위한 내용을 다루고 있다. 조립 부의 내외경과 조립 공차, 챔퍼길이와 각도, 조립 홈의 외경, 깊이, 폭, 구성반경, O-링의 내경과 선 직경 등의 설계 변수에 의한 조립부 형상과 재료의 물성치, 유한요소 선택 및 요소 분할, 경계조건, 하중조건, 접촉부 정의 등을 MSC/PATRAN3의 $PCL^{[1]}$/로 프로그래밍 하여 설계변수에 의한 결과 분석을 손쉽게 수행할 수 있도록 시도하였다 고무의 Hyperelastic 물성치는 문헌상의 자료$자료^{[2]}$에 제시된 Ogden 상수를 사용하였으며 추후에는 인장시험, 순수전단시험, 이 축 인장시험을 통해 실험적으로 측정$^{[3]}$ 하여 적용할 예정이다. 고무의 대변형, 대 변형률을 고려한 비선형 응력해석은 MSC/PATRAN3의 Advanced FEA 모듈과 ABAQUS 5.5를 사용하였다. 본 연구에서의 해석결과를 설계변수들의 영향을 비교 분석하는데 사용하였으나 그 정확도가 입증된 상태는 아니며 추후 실제 조립 및 수압시험을 통해 평가할 예정이다.

  • PDF

Finite element modeling and dynamic characteristic analysis of the tilting turret slide system (틸팅터릿 이송시스템의 유한요소 모델링 및 동특성 해석)

  • 정상화;김상석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.188-192
    • /
    • 2000
  • In multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of each structures such as saddle, careg, and turret are simulated by MSC/NASTRAN, for the purpose of developing the effective design. The results of mode analysis and frequency analysis are visualized with PATRAN, and the mothod which can solve the resornance problem by eigenvalues and eigenvectors of each axe is developed as well.

  • PDF

In-Cylinder Flow Analysis of a Lean-Burn Engine(I) (희박 엔진 연소실내의 유동해석(I))

  • Yang, H.C.;Lee, J.S.;Yoo, J.Y.;Choi, H.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.188-198
    • /
    • 1995
  • Turbulent flow characteristics of a lean-burn engine were qualitatively studied in order to obtain the optimum design parameters. 3-D lean-burn model engine was made up of an intake port, an intake valve and a cylinder. Computational grids were generated using PATRAN which was a FEM grid-generation software and numerical calculations were performed using STAR-CD. The predicted results showed that swirl and tumble structures were significantly changed by the valve lifts.

  • PDF

FE Analysis of Forged Parts of Suspension Bridge : cases of Strand Shoe and Hanger Socket (입체요소를 이용한 현수교 주단강품의 유한요소해석 : 스트랜드슈와 행어소켓)

  • 최창근;이태열;노혁천;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.149-156
    • /
    • 1998
  • In suspension bridges, the axial farces in the wires are transferred by side pressure on the semicircular face, and further from the strand shoe through rods to a base plate fixed to the massive concrete part of the anchor block. For prefabricated strands the most common way of anchoring is by socketing the ends of the strands. In this study, strand shoe and hanger socket are analyzed far various load conditions using Finite Element Method. The finite element models are built using MSC/PATRAN and analysis is carried out using MSC/NASTRAN. Results are again completely processed using MSC/PATRAN. From the results of the analysis, trends of deformation and stress distribution are reviewed and important factors to consider in the design of strand shoe and hanger socket are discussed.

  • PDF