• Title/Summary/Keyword: PARTICLE SIZE

Search Result 7,279, Processing Time 0.04 seconds

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Investigation of the effect of water chemistry on biologically mediated flocculation in the aquatic environment (수질화학 조성이 수자원환경에서의 미세 부유입자 응집 거동에 미치는 영향 연구)

  • Choi, Jeong Wooa;Lee, Byung Joon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.715-723
    • /
    • 2017
  • Extracellular Polymeric Substances (EPS) in the water environment assemble fine, colloidal particles, such as clays, microorganisms and biomass, in large flocs, which are eventually subject to sedimentation and deposition and determine water/sediment quality and quantity. This study hence aimed to investigate the way that water and colloidal chemistry affects EPS-mediated flocculation of colloidal particles, using a jar-test experiment. Especially, ionic strength, divalent cation and humic substances concentrations were selected as experimental variables in the jar-test experiments, to elucidate their effects on EPS-mediated flocculation. A higher ionic strength increased flocculation capability, reducing electrostatic repulsion between EPS-attached colloidal particles and enhancing particle aggregation. 0.1 M NaCl ionic strength had higher flocculation capability, with 3 times larger floc size and 2.5 times lower suspended solid concentration, than 0.001 M NaCl. Divalent cations, such as $Ca^{2+}$, built divalent cationic bridges between colloidal particles and EPS (i.e., $colloid-Ca^{2+}-EPS$ or $EPS-Ca^{2+}-EPS$) and hence made colloidal particles to build into large, settelable flocs. A small $Ca^{2+}$ concentration enhanced flocculation capability, reducing suspended solid concentration 20 times lower than the initial dosed concentration. However, humic substances, adsorbed on colloidal particles, reduced flocculation, because they blocked EPS adsorption on colloidal particles and increased negative charges and electrostatic repulsion of colloidal particles. Suspended solid concentration in the tests with humic substances remained as high as the initial dosed concentration, indicating stabilization rather than flocculation. Findings about EPS-mediated flocculation in this research will be used for better understanding the fate and transport of colloidal particles in the water environment and for developing the best management practices for water/sediment quality.

Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series (산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여)

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1973
  • The morphological, physical, and chemical properties of Sonjeong series derived from acidic crystalline rocks are presented. Also it deals with the genesis and classification of the Songjeong series. Morphologically these soils have brown to dark brown loam A horizons and yellowish red to red clay loam Bt horizons with moderate, medium subangular blocky structure and thin patchy clay cutans on the ped faces. C horizons are very deep, yellowish red to yellowish brown fine sandy loam or sandy loam with original rock structure. Physically distribution of particle size indicates that clay increases with depth up to argillic horizons but below the argillic horizons clay content decrease. The moisture holding capacity is fairly good in Songjeong soils. Chemically soil reaction is strongly to very strongly acid throughout the profile and content of organic matter is less than 1 per cent except A horizons. Cation exchange capacity ranges from 5 to 9 me/100g of soils and base saturation is less than 35 per cent throughout the profile. The natural fertility of Songjeong soils are usually low. It needs lime, organic matter, and heavy application of fertilizer for the crop land. These soils occur temperate and humid climate under coniferous, deciduous, and mixed forest vegetation. Songjeong soils are classified as Red-Yellow Soils. Characteristically Songjeong soils are similar to Red-Yellow Podzolic soils in the United States but lack of A2 horizons and are quite liket Red-Yellow Soils of the Japan. According to new classification system which is 7th approximation of USDA Songjeong soils can be classified as fine loamy, mesic family of Typic Hapludults and in the FAO/UNESCO project World Soil Map as Orthic Acrisols.

  • PDF

Three Phases and Water Characteristics of Horticultural Substrates (원예(園藝) 상토재료(床土材料)의 삼상(三相)과 수분특성(水分特性))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • A study was carried out to find out the basic information in physical properties for selection and manufacturing the good seedling media through the analysis of the physical properties, such as particle size, water retention and three phases of the major horticultural substrates. Easily available water(EAW), the water contents between 1kPa and 5kPa water potental, was highest in peatmoss with 39%, and perlite 34.0%, vermiculite 16.9%, but the values of osmunda and bark were lower than 4.8%. Water buffering capacity(WBC), the water content between 5kPa and 10kPa, was 6.1% in peatmoss and 2.3% in vermiculite but it was lower than 1.0% in other substrates. To adjust the suitable range of water potential at crossing point of water and air curves to 1.5~2.5kPa, more finer materials were needed in osmunda and bark, and more coarser materials must be added to peatmoss, perlite and vermiculite. Water potentials of substrates in saturated pot condition were equivalent to 2.2kPa in peatmoss and others were ranged in 1.0kPa to 4.3kPa of water potential in pressure chamber.

  • PDF

Model Equations to Estimate the Soil Water Characteristics Curve Using Scaling Factor (Scaling Factor를 이용한 토양수분특성곡선 추정모형)

  • Eom, Ki-Cheol;Song, Kwan-Cheol;Ryu, Kwan-Shig;Sonn, Yeon-Kyu;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.227-232
    • /
    • 1995
  • The model equations including scaling factors to estimate the soil water characteristics curve(SWCC) without direct measurement of soil water tension were developed. Scaling were applied to a data set of soil water content, soil water tension, particle size distribution, and OM contents of the 134 soil samples with the 10 soil textural classes. The capability of the model equations was tested on another 205 soil samples. The parameter, ${\theta}^*$, of soil water contents was used by scale transformation as follows : ${\theta}^*=[{\theta}i-{\theta}(1.5MPa)]$/$[{\theta}(10KPa)-{\theta}(1.5MPa)]$ Using ${\theta}^*$ a model equation to estimate SWCC, which was applicable to all textural classes, was developed as follows: $H(0.1MPa)=0.13{\cdot}({\theta}^*)^{-2.04}$. Other model equations to estimate the water content at the soil water tension of 10KPa [${\theta}(10KPa)$] and 1.5MPa [${\theta}(1.5MPa)$], which are required to ${\theta}^*$ were developed by using scale factors of sand(S) and silt(Si) content and organic matter content(OM) as foilows : ${\theta}(10KPa)=26.80-3.99ln[S]+2.36{\sqrt{[Si]}}+2.88[OM]$ ($R=0.81^{**}$) ${\theta}(1.5KPa)=15.75-2.86ln[S]+0.55{\sqrt{[Si]}}+0.70[OM]$ ($R=0.76^{**}$) The measured and estimated values of ${\theta}(1/30MPa)$ on the 205 soil samples were highly correlated on 1 : 1 corresponding line with $R=0.85^{**}$.

  • PDF

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

Studies on the Surface Charge Characteristics and Some Physico-Chemical Properties of two Synthetic Iron Hydrous Oxides and one Aluminum Hydroxide Minerals (합성(合成) 수산화(水酸化) 철(鐵) 광물(鑛物)과 수산화(水酸化) 알루미늄 광물(鑛物)의 표면(表面) 전하(電荷) 및 물리화학적(物理化學的) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.147-154
    • /
    • 1984
  • Two Fe-hydrous oxide A,B and one Al-hydroxide minerals were synthesized precipitating Fe $Cl_3$ and $AlCl_3$ with alkali solution(NaOH) at pH 6.0, 12.0 and 4.5 respectively, for precise understanding of physico-chemical and surface charge characteristics of soils in which these minerals are dominant. Identification of these final products, effect of free and amorphous materials on X-ray diffraction analysis, particle size distribution and surface change characterics of these minerals were performed. Fe-hydroxide A and B were identified as great deal of X-ray amorphous material and as goethite with large amount of X-ray amorphous material, respectively. Dehydration by oven at $105^{\circ}C$ of these minerals exhibited akaganeite peaks with low X-ray amorphous hump and pure goethite peaks for Fe-hydroxide A and B, respectively. Both minerals, however, turned into hematite upon firing at $550^{\circ}C$. On the other hand, Al-hydroxide identified as mixture of gibbsite and bayerite of around 7:3 ratio. Application of sodium dithionite and ammonium oxalate solutions for removal of free or amorphous Fe and Al from these minerals revealed that only peak intensities of Al-hydroxide system were enhanced upon Al-extraction by oxalate solution even though dithionite solution was much powerful to extract Fe from Fe-hydrous oxide systems. Original(wet) Fe-hydrous oxide A has the highest specific surface and surface charge development(negative and positive), and the greatest amount of less than $2{\mu}m$ sized particles. Specific surface and clay sized particles(less than $2{\mu}m$) of Fe-hydrous oxide A, however, were drastically reduced upon dehydration($P_2O_5$ and oven drying) compare to the rest minerals. The Z.P.C. of these synthetic minerals were 8.0-8.5, 7.5-8.0 and 5.5-6.0 for Fe-hydrous oxide A, B and Al-hydroxide, respectively.

  • PDF

Antigenic localities in the tissued of Metagonimus yokogawai observed by immunogoldlabeling method (면역황금 표식법을 이용한 요꼬가와흡충의 조직내 항원성 부위에 관한 연구)

  • Ahn, Hyuk;Rim, Han-Jong;Kim, Soo-Jin
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.3
    • /
    • pp.245-258
    • /
    • 1991
  • In order to determine the antigenic localization in the tissues of the adult Metagonimus yokegawai, immunogoldlabeling method was applied using serum immunoglobulins (IgG) of cats which were infected with isolated metacercariae from Plecoglossus altivelis. The sectioned worm tissue was embedded in Lowicryl HM 20 medium and stained with infected serum IgG and protein A gold complex (particle size: 12 nm) , It was observed by electron microscopy at each tissue of the worm. The gold particles were observed on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum. The gold particles were not observed on the basal lamina of the tegument, interstitial matrix of the parenchyma, the muscle tissue and mitochondria of the tegument. The gold particles were specifically labeled in the secretory granules in the vitelline cells. They were also labeled on the lumen of bladder and egg shell. The above findings showed that antigenic materials in the tissue of adult worms were specifically concentrated on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum.

  • PDF

Preparation of $^{99m}Tc-HYNIC-PEG-liposomes$ for Imaging of the Focal Sites of Infection (농양 진단을 위한 $^{99m}Tc-HYNIC-PEG-liposomes$의 제조)

  • Hong, Jun-Pyo;Awh, Ok-Doo;Kim, Hyun-Suk;Lee, Eun-Sook;Lee, Tae-Sup;Choi, Tae-Hyun;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.333-343
    • /
    • 2002
  • Purpose: A new linker, hydrazino nicotinamide (HYNIC), was recently introduced for labelling of liposome with $^{99m}Tc$. In this study we synthesized HYNIC derivatized PEG (polyethylene glycol)-liposomes radiolabeled with $^{99m}Tc$. Materials and Methods: In order to synthesize HYNIC-DSPE (distearoyl phosphatidyl ethanolamine) which is a crucial component for $^{99m}Tc$ chelation, first of all succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized from 6-chloronicotinic acid by three sequential reactions. A DSPE derivative of succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was transformed into HYNIC-DSPE by HCI/dioxane. HYNIC-PEG-liposomes were prepared by hydration of the dried lipid mixture of EPC (egg phosphatidyl choline): PEG-DSPE : HYNIC-DSPE:cholesterol (1.85:0.15:0.07:1, molar ratio). The HYNIC-PEG-liposomes were labeled with $^{99m}Tc$ in the presence of $SnCl_2{\cdot}2H_2O$ (a reducing agent) and tricine (a coligand). To investigate the level of in vivo transchelation of $^{99m}Tc$ in the liposomes, the $^{99m}Tc$-HYNiC-PES-liposomes were incubated with a molar excess of DTPA, cysteine or glutathione solutions at $37^{\circ}C$ for 1 hour. The radiolabeled liposomes were also incubated in the presence of human serum at $37^{\circ}C$ for 24 hours. Results: 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized with 77.3% overall yield. The HYNIC concentration in the PEG-coated liposome dispersion was 1.08 mM. In condition of considering the measured liposomal size of 106 nm, the phospholipid concentration of $77.5\;{\mu}mol/m{\ell}$ and the liposomal particle number of $5.2{\times}10^{14}$ liposomes/ml, it is corresponded to approximate 1,250 nicotinyl hydrazine group per liposome in HYNIC-PEG-liposome. The removal of free $^{99m}Tc$ was not necessary because the labeling efficiency were above 99%. The radiolabeled liposomes maintained 98%, 96% and 99%, respectively, of radioactivity after incubation with transchelators. The radiolabeled liposomes possessed above 90% of the radioactivity in serum. Conclusion: These results suggest that the HYNIC can be synthesized easily and applied in labelling of PEG-liposomes with $^{99m}Tc$.