• 제목/요약/키워드: PARP4

검색결과 230건 처리시간 0.024초

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells

  • Wang, Hui;Lu, Changqing;Li, Qing;Xie, Jun;Chen, Tongbing;Tan, Yan;Wu, Changping;Jiang, Jingting
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.812-818
    • /
    • 2014
  • This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.

Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis

  • Kim, Hyun-Lim;Ra, Hana;Kim, Ki-Ryeong;Lee, Jeong-Min;Im, Hana;Kim, Yang-Hee
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.312-317
    • /
    • 2015
  • Depletion of intracellular zinc by N,N,N,N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream pro-apoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.

STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation

  • Purna Krishnamurthy;Mark H. Kaplan
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.201-210
    • /
    • 2016
  • Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.

Curcumin Induces Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cell Lines Via PARP-1 Cleavage

  • Mishra, Deepshikha;Singh, Sunita;Narayan, Gopeshwar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.3865-3869
    • /
    • 2016
  • Curcumin, a polyphenolic compound isolated from the rhizomes of an herbaceous perennial plant, Curcuma longa, is known to possess anticancerous activity. However, the mechanism of apoptosis induction in cancers differs. In this study, we have (1) investigated the anticancerous activity of curcumin on REH and RS4;11 leukemia cells and (2) studied the chemo-sensitizing potential of curcumin for doxorubicin, a drug presently used for leukemia treatment. It was found that curcumin induced a dose dependent decrease in cell viability because of apoptosis induction as visualized by annexin V-FITC/ PI staining. Curcumin-induced apoptosis of leukemia cells was mediated by PARP-1 cleavage. An increased level of caspase-3, apoptosis inducing factor (AIF), cleaved PARP-1 and decreased level of Bcl2 was observed in leukemia cells after 24h of curcumin treatment. In addition, curcumin at doses lower than the $IC_{50}$ value significantly enhanced doxorubicin induced cell death. Therefore, we conclude that curcumin induces apoptosis in leukemia cells via PARP-1 mediated caspase-3 dependent pathway and further may act as a potential chemo-sensitizing agent for doxorubicin. Our study highlights the chemo-preventive and chemo-sensitizing role of curcumin.

Expression of Poly (ADP-ribose) Polymerase During Apoptosis Induced by Ultraviolet Radiation in HeLa $S_3$ Cells

  • Chang, Jeong-Hyun;Kwon, Heun-Young
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.349-354
    • /
    • 2006
  • Induction of apoptosis allows the organism to get rid of abnormal cells and also of tumor cells. Understanding the mechanism involved in Ultraviolet radiation (UV) induced apoptosis may improve its therapeutic efficacy. In this study, we present expression of poly (ADP-ribose) polymerase (PARP) during apoptosis induced by UV in HeLa $S_3$ cells. Four different assays were performed in this study: morphological assessment of apoptotic cells and cell viability, DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, and expression of PARP by the western blot analysis. The percentages of apoptotic HeLa $S_3$ cells irradiated with $75J/m^2$ UV was increased continuously from 3 hrs incubation. DNA ladder pattern was appeared at 6 hrs. The amount of nucleosomal DNA fragments in cells treated UV increased from 3 to 12 hrs incubation and gradually decreased. The cleavage of PARP in HeLa $S_3$ cells irradiated with UV was induced, and the cleavage of PARP was more delayed in the cells pretreated with $5J/m^2$ UV and subsequently irradiated with $75J/m^2$ UV. than that in the cells only irradiated with $75J/m^2$ UV. Thus these data suggest that the cleavage of PARP relates with DNA fragmentation associated with apoptosis.

  • PDF

Synthesis and Evaluation of Tricyclic Derivatives Containing a Non-Aromatic Amide as Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors

  • Park, Chun-Ho;Chun, Kwang-Woo;Choi, Jong-Hee;Ji, Wan-Keun;Kim, Hyun-Young;Kim, Seung-Hyun;Han, Gyoon-Hee;Kim, Myung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1650-1656
    • /
    • 2011
  • A series of potent tricyclic derivatives with a non-aromatic amide as potent PARP-1 inhibitors were successfully synthesized and their PARP-1 inhibitory activity was evaluated. Among the derivatives, 2-(1-propylpiperidin-4-yloxy)-7,8,9,10-tetrahydrophenanthridin-6(5H)-one 23c displayed potent activity in a PARP-1 enzymatic assay and cell-based assay ($IC_{50}$ = 0.142 ${\mu}M$, $ED_{50}$ = 0.90 ${\mu}M$) with good water solubility. Further, molecular modeling studies confirmed the obtained biological results.

Studies on Benzofuran-7-carboxamides as Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors

  • Lee, Sun-Kyung;Yi, Kyu-Yang;Lee, Byung-Ho;Oh, Kwang-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1147-1153
    • /
    • 2012
  • Benzofuran-7-carboxamide was identified as a novel scaffold of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor. A series of compounds with various 2-substituents including (tertiary amino)methyl moieties substituted with aryl ring and aryl groups containing tertiary amines, were synthesized and biologically evaluated to elucidate the structure-activity relationships and optimize the potency. 2-[4-(Pyrrolidin-1-ylmethyl)phenyl]-benzofuran-7-carboxamide (42) was the most potent as an IC50 value of 40 nM among those.

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

Apoptotic Effects of 6-Gingerol in Human Breast Cancer Cells

  • Kim, Hyun-Woo;Oh, Deuk-Hee;Koh, Jeong-Tae;Lim, Young-Chai
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.223-228
    • /
    • 2015
  • 6-Gingerol exerts anti-tumor effects in various cancer cell models. We evaluated the effect of 6-gingerol on the growth of MCF-7 breast cancer cells and MCF-10A breast epithelial cells to determine whether any growth-inhibitory effects found were attributable to apoptosis, and to elucidate the underlying mechanism of action. 6-Gingerol inhibited the viability of both cell lines in a dose- and time-dependent manner; however, the degree of inhibition was greater in MCF-7 than MCF-10A cells. By flow cytometry, induction of dose- and time-dependent apoptosis was found, and the magnitude of apoptosis was also markedly greater in MCF-7 than MCF-10A cells. Expression of caspase-3 and poly (ADP-ribose) polymerase (PARP) was observed in MCF-7 cells treated with 6-gingerol, and further cleavage of PARP occurred in these cells. We suggest that 6-gingerol induces apoptosis in human breast cancer cells mainly by promoting caspase-3 expression and subsequent degradation of PARP.