• 제목/요약/키워드: PAMAM

검색결과 33건 처리시간 0.021초

Synthesis and Characterization of a Hydroxylated Dendrimeric Gene Delivery Carrier

  • Kim, Tae-Il;Bai, Cheng-Zhe;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1317-1321
    • /
    • 2007
  • Arginine conjugated PAMAM dendrimer, PAMAM-R was modified with propylene oxide via hydroxylation of primary amines of arginine residues. About 49 amines were detected to be converted to amino alcohols by 1H NMR. The newly synthesized polymer, PAMAM-R-PO was able to completely retard pDNA from a charge ratio of 2. The average diameter of PAMAM-R-PO polyplex was found to be 242 nm at a charge ratio of 30. The Zeta-potential value of PAMAM-R-PO polyplex was able to reach 20-30 mV over a charge ratio of 10. PAMAM-R-PO indicated higher cell viability than unmodified PAMAM-R on HeLa and 293 cells because of its hydroxylated amines. Transfection experiments on 293 cells showed that the transfection efficiency of PAMAM-R-PO was found to be 1.5-1.9 times higher than that of PEI25kDa at a charge ratio of 30. The polymer eventually displayed about 2 times greater transfection efficiency than PAMAM-R at the same charge ratio in the absence of serum. Therefore, we concluded that the modification of primary amines of PAMAMR to amino alcohols gives positive effects such as reduced cytotoxicity and enhanced transfection efficiency on 293 cells for gene delivery potency of PAMAM-R.

PAMAM Dendrimers Conjugated with L-Arginine and γ-Aminobutyric Acid as Novel Polymeric Gene Delivery Carriers

  • Son, Sang Jae;Yu, Gwang Sig;Choe, Yun Hui;Kim, Youn-Joong;Lee, Eunji;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.579-584
    • /
    • 2013
  • In this study, we synthesized functional dendrimer derivatives as nonviral gene delivery vectors. Poly(amidoamine) dendrimer (PAMAM, generation 4) was modified to possess functional amino acids to enhance gene transfection efficiency. PAMAM G4 derivatives conjugated with L-arginine (Arg) and ${\gamma}$-aminobutyric acid (GABA) showed higher transfection efficiency and lower cytotoxicity compared to the native PAMAM G4 dendrimer. The polyplex of the PAMAM G4 derivative/pDNA was evaluated using an agarose gel retardation assay and Picogreen reagent assay. Additionally, the MTT assay was performed to examine the cytotoxicity of synthesized polymers. All PAMAM G4 derivatives showed lower cytotoxicity than PEI25kD. Particularly, PAMAM G4-GABA-Arg displayed enhanced transfection efficiency compared to the native PAMAM G4 dendrimer.

Sequential Conjugation of 6-Aminohexanoic Acids and L-Arginines to Poly(amidoamine) Dendrimer to Modify Hydrophobicity and Flexibility of the Polymeric Gene Carrier

  • Yu, Gwang-Sig;Yu, Ha-Na;Choe, Yun-Hui;Son, Sang-Jae;Ha, Tai-Hwan;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.651-655
    • /
    • 2011
  • We synthesized a novel cationic dendrimer consisting of a poly(amidoamine) dendrimer (PAMAM, generation 4) backbone with both L-arginine (Arg) at the termini and 6-aminohexanoic acid (Ahx) between the original core polymer and the peripheral Arg units. The sequential chemical modification of PAMAM G4 with Ahx and Arg resulted in higher transfection efficiency with much less cytotoxicity. PAMAM G4-Ahx-Arg formed stable polyplexes at weight ratios of 8:1 or higher (polymer: plasmid DNA), and the mean polyplex diameter was $180{\pm}20nm$. PAMAM G4-Ahx-Arg showed much higher transfection ability than PAMAM G4 or PAMAM G4-Ahx. Furthermore, PAMAM G4-Ahx-Arg was much less cytotoxic than PEI25KD and PAMAM G4-Arg. In addition to Arg grafting of the PAMAM dendrimer, which endows a higher transfection capability, the addition of Ahx spacer increased dendrimer hydrophobicity, introduced flexibility into the conjugated amino acids, and reduced cytotoxicity. Overall, it appears that the concomitant modification of PAMAM with Ahx and Arg could lead to new PAMAM conjugates with better performances.

Balb/c 마우스에서 Keyhole limpet hemocyanine (KLH)의 항원성에 대한 PAMAM dendrimer 의 면역증강 효과 (Adjuvant Effect of PAMAM Dendrimer on the Antigenicity of Keyhole Limpet Hemocyanin in Balb/c Mice)

  • 이가영;김민지;김소연;이경복;오동현;조영호;유영춘
    • 생명과학회지
    • /
    • 제30권10호
    • /
    • pp.905-911
    • /
    • 2020
  • 본 연구에서는 Keyhole limpet hemocyanin (KLH)에 대한 체액성 및 세포성 면역반응 유도에 대한 PAMAM dendrimer G4 (PAMAM)의 증강 효과를 조사하였다. PAMAM을 KLH와 2주 간격으로 2회 피하주사로 면역한 후, KLH에 대한 특이항체를 측정한 결과, KLH+PAMAM 면역 그룹은 KLH만을 단독으로 면역한 그룹에 약 30배이상 높은 유의한 항체가(IgG+IgA+IgM) 상승을 나타냈다. ELISA 분석에 의해 KLH 특이적인 면역글로부린의 isotype을 측정한 결과, PAMAM를 혼합하여 면역함으로서 IgG1, IgG2a, IgG2b, IgG3 및 IgM 항체의 역가가 유의하게 증가하는 것으로 확인되었다. 또한 면역 개시 7주째에 면역동물에 KLH 항원을 피하주사하고 swelling reaction을 통해 세포성 면역반응인 지연형 과민반응(DTH)을 측정한 결과, KLH+PAMAM으로 면역한 그룹에서 KLH만을 단독으로 면역한 그룹에 비해 높은 DTH 유도활성이 관찰되었다. 한편 면역동물의 비장세포를 취하여 in vitro에서 KLH로 재자극한 후 림프구 증식반응과 사이토카인 유도활성을 측정한 결과, PAMAM을 혼합하여 면역한 그룹에서 KLH 단독 면역 그룹에 비해 림프구의 증식반응에 유의하게 증가하였으며, Th1 type (IFN-γ)과 Th2 type (IL-4) 사이토카인의 생성도 모두 상승하는 것으로 확인되었다. 이상의 결과로부터 PAMAM dendrimer는 함께 투여된 항원물질에 의해 유도되는 세포성 면역과 체액성 면역을 상승시키는 활성이 있는 것으로 확인되었으며, 이는 PAMAM dendrimer가 면역 adjuvant로서 응용 가능한 소재임을 입증하는 것이다.

Electrochemistry on Alternate Structures of Gold Nanoparticles and Ferrocene-Tethered Polyamidoamine Dendrimers

  • Suk, Jung-Don;Lee, Joo-Han;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1681-1686
    • /
    • 2004
  • Self-assembled systems with polyamidoamine (PAMAM) dendrimers combined with gold nanoparticles have been widely studied because of their potential applications in molecular electronics, catalyst carriers, chemical sensors, and biomedical devices. In our work, gold nanoparticle monolayers and multilayers with pure and ferrocene-tethered PAMAM dendrimers as cross-linking molecules were deposited on a mixed self-assembled monolayer of gold substrates. The various generations of PAMAM dendrimers can be covalently attached to mercaptoundecanoic acid mixed with a mercaptoundecanol self-assembled monolayer. Cyclic voltammograms show that redox peak currents on the alternate multilayers of gold nanoparticles and ferrocene-tethered PAMAM dendrimers increase as the number of layers increases. Fourier transform IR external reflection spectroscopy and scanning electron microscopy support the results from electrochemical measurements.

Convergent Synthesis of PAMAM-like Dendrimers from Azide-functionalized PAMAM Dendrons

  • Lee, Jae-Wook;Kim, Jung-Hwan;Kim, Byung-Ku;Kim, Ji-Hyeon;Shin, Won-Suk;Jin, Sung-Ho;Kim, Myung-hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1795-1800
    • /
    • 2006
  • The convergent synthesis of symmetric PAMAM-like dendrimers from azide-functionalized poly(amido- amine) (PAMAM) dendrons and two different multi-alkynes was investigated. The stitching method was based on the click chemistry protocol, i.e., the copper-catalyzed cycloaddition reaction between an alkyne and an azide.

PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier

  • Jung, Jinwoo;Lee, Jeil;Kim, Tae-Hun;Yang, Bong Suk;Lee, Eunji;Kim, Youn-Joong;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1036-1042
    • /
    • 2014
  • In this study, we introduced the RRLR oligopeptide sequences on the surface of polyamidoamine (PAMAM) dendrimer and characterized the physical properties and gene carrier activity of the novel polymer using HEK 293, NIH3T3, and HeLa cells. The RRLR peptide sequences were derived from a mouse fibroblast growth factor 3 (FGF3) protein containing a bipartite NLS motif. The entire sequence of FGF3 is RLRRDAGGRGGVYEHLGGAPRRRK and it has two functional sequences RLRR and RRRK at N-terminus and C-terminus, respectively. In particular, PAMAM G4-RRLR conferred enhanced transfection efficiency and lower cytotoxicity compared with those of PEI 25 kDa, PAMAM G4-R, and PAMAM G4 in various cell lines. These results suggest that the introduction of N-terminal oligopeptides of FGF3 on the surface of PAMAM holds promise as an effective non-viral gene delivery carrier for gene therapy.

Patterning Biological Molecules onto Poly(amidoamine) Dendrimer on Gold and Glass

  • Hong, Mi-Young;Lee, Do-Hoon;Yoon, Hyun C.;Kim, Hak-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1197-1202
    • /
    • 2003
  • Patterning of biological molecules was attempted on both gold and glass using fourth generation (G4) poly(amidoamine) (PAMAM) dendrimer as an interfacing layer between solid surfaces and biomolecules. As for the patterning of avidin and anti-biotin antibody on gold, PAMAM dendrimers representing amine functionalities were firstly printed onto the 11-mercaptoundecanoic acid SAM by microcontact printing, followed by biotinylation, and reacted with fluorescence-labeled avidin or anti-biotin antibody. Fluorescence microscopic analysis revealed that the patterns of avidin and anti-biotin antibody were well constructed with the resolution of < 2 ㎛. The PAMAM dendrimers were also printed onto aldehyde-activated slide glass and reacted directly with anti-BSA antibodies, which had been oxidized with sodium periodate. As a result, distinct patterns of the anti-BSA antibodies were also obtained with a comparable edge resolution to that of avidin patterns on gold. These results clearly show that PAMAM dendrimers can be adopted as an interfacing layer for the patterning of biological molecules on solid surfaces with micrometer resolution.

Covalent Immobilization of Trypsin on a Novel Aldehyde-Terminated PAMAM Dendrimer

  • Hamidi, Aliasghar;Rashidi, Mohammad R.;Asgari, Davoud;Aghanejad, Ayuob;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2181-2186
    • /
    • 2012
  • Dendrimers are a novel class of nonlinear polymers and due to their extensive applications in different fields, called versatile polymers. Polyamidoamine (PAMAM) dendrimers are one of the most important dendrimers that have many applications in nanobiotechnology and industry. Generally aldehyde terminated dendrimers are prepared by activation of amine terminated dendrimers by glutaraldehyde which has two problems, toxicity and possibility of crosslink formation. In this study, novel aldehyde-terminated PAMAM dendrimer was prepared and used for covalent immobilization of trypsin by the aim of finding a special reagent which can prevent crosslinking and deactivation of the enzyme. For this purpose aminoacetaldehydedimethylacetal (AADA) was used as spacer group between aldehyde-terminated PAMAM and trypsin.The findings of this study showed that immobilization of trypsin not only resulted higher optimal temperature, but also increased the thermal stability of the immobilized enzyme in comparison to the free enzyme.