• Title/Summary/Keyword: PAHCs

Search Result 5, Processing Time 0.017 seconds

A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment (응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구)

  • Park, Sang-Hyuk;Hong, Jong-Hyun;Yu, Myong-Jin;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

The Correlation Between the Polymeric Aluminum Species of Inorganic Coagulant and Its Coagulation Efficiency (알루미늄계 무기 고분자 응집제에서 알루미늄 폴리머 생성과 응집효율과의 상관관계)

  • Kim, Jee-Yeon;Lee, Chang-Ha;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.331-336
    • /
    • 2004
  • The correlation between polymeric aluminum species of coagulant and its coagulation efficiency was investigated using several commercial polymeric Al(III) inorganic coagulants (Poly Aluminum Hydroxy Chloro Sulfate 2020 (PAHCS2020), Poly Aluminum Hydroxy Chloro Sulfate 2500 (PAHCS2500) which was introduced in Korean water treatment plants. The poly aluminum chloride (PAC), Poly Aluminum Hydroxide Chloride Silicate (PACS)) and the aluminum salts ($AlCl_3$, Alum ($Al_2(SO_4)_3$)) were used for the purpose of comparison. The comparison of the coagulation efficiency of each coagulant was made by turbidity removal through the standard jar testing procedure and the determination of the hydrolytic Al(III) species was made by the ferron method which can differentiate the monomeric aluminum species from the polymeric aluminum species. Overall, PAHCS2020 and PAHCS2500 showed the better performance in turbidity removal than the aluminum salts. The performance of coagulation was even better without adjustment of pH during the coagulation experiment. The positive correlation between polymeric aluminum species of coagulant and coagulation efficiency was found.

A study on the removal characteristics of bisphenol in water by coagulation (응집에 의한 Bisphenol A의 제거특성)

  • Park, Jihyun;Shin, Daeyewn;Park, Sunku
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.181-187
    • /
    • 2006
  • This study was carried to survey the removal characteristics of BPA using coagulation process by PAC and PAHCS. BPA removal for PAC and PAHCS was 20.4 with 8.7 Al mg/L and 6.8 Al mg/L, respectively. Removal of BPA was lower than $UV_{254}$ and DOC but removal characteristics were similar. BPA removal for PAC and PAHCS was most high in pH 6.5 and 7.0 respectively. The time for removal by mixing time was 40 min in PAC and 30 min in PAHCS. When powdered activated carbon 50 mg/L was added in coagulation process, a high remove of BPA (61%) was noticed. Specially BPA was highly increase powdered activated carbon 5 mg/L alone. These results will be appliable in the conventional water treatment plants for improvement of water treatment system.

Removal of natural organic matter and trihalomethane formation potential by four different coagulants during coagulation-microfiltration processes (응집과 막여과 공정에서 응집제에 따른 유기물 및 THMFP제거)

  • Park, Keun Young;Choi, Yang Hun;Jin, Yong Chul;Kang, Sun Ku;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.101-112
    • /
    • 2013
  • Integrated process with coagulation and microfiltration as an advanced water treatment has been expanded its application in recent years due to its superb removal of particles and natural organic matter. In usual, effectiveness of coagulation sometimes determines performance of the whole system. Several new polymeric coagulants introduced to water utilities for better efficiency were studied in this paper. Three polymeric coagulants (i.e., PACl, PACs, and PAHCs) along with alum were evaluated for removal of natural organic matter, especially for reduction of trihalomethane formation potential, for which regulation has become stringent. Turbidity removal was closely related to pH variation showing the reduced turbidity removal by PACs due to the decreases in the pH of supernants at high doses. The four coagulants showed different organic matter removal during coagulation and affected the removal in microfiltration. For instance, DOC concentration was not reduced by microfiltration when PAHCs were used however 10 % of DOC removal was observed by microfiltration with alum coagulation. Coagulation pretreatment also impacted the THM removals, i.e., approximately 30 % of THMs and 13 % of DOC was removed by microfiltration only, but 40 to 67 % of THMs and 30 % of DOC was removed by the integrated process. Strategies on selection of coagulants are needed depending on characteristics of target pollutants in raw waters.

Optimum Coagulation Conditions for Ceramic Microfiltration Membrane Process (세라믹 정밀여과막 공정을 위한 최적 응집조건)

  • Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Park, Jong-Yul
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • This study was carried out to find the optimum coagulation conditions for ceramic microfiltration process of Y water treatment plant. When pH of raw water from Y Dam was adjusted to 7, the efficiency of coagulation was the best and the optimun dosage of coagulant was 3 mg/L(as $Al_2O_3$) for turbidity of raw water less then 10 NTU in Jar test. In mini module test, the decay rate of specific flux was the lowest when PAC (poly Aluminum Chloride) was used among coagulants and pH was adjusted to 7. The decay rate of specific flux for raw water turbidity of 10~30 NTU was greatly decreased with increase of dosage of coagulant (PAC) while the rate was not significantly decreased for turbidity more than 50 NTU. In conclusion, the optimum dosage of PAC (11% as $Al_2O_3$) was 30 and 50 mg/L for raw water turbidity of less than 10 NTU and more than 50 NTU, respectively. The dosage of PAC should be increased linearly 30 to 50 mg/L depending on raw water turbidity of 10 to 50 NTU.