• Title/Summary/Keyword: PAF-acetylhydrolase

Search Result 4, Processing Time 0.022 seconds

Detection and Characterization of 45 kDa Platelet Activating Factor Acetylhydrolase in Cerebrospinal Fluid of Children with Meningitis

  • Moon, Tae-Chul;Kim, Mi-Suk;Lee, Su-Jeong;Lee, Tae-Yoon;Kwon, Soon-Hak;Baek, Suk-Hwan;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.554-558
    • /
    • 2003
  • Platelet activating factor acetylhydrolase (PAF-AH) activity has been identified in cerebrospinal fluid (CSF) samples taken from children with meningitis. We reported that PAF-AH activity is significantly increased, by about 3 fold, in patients with meningitis compared to control subjects. Because of limited knowledge about this enzyme in CSF, we examined the biochemical properties of CSF PAF-AH. PAF-AH of CSF was calcium independent, showed a broad pH spectrum and was relatively heat stable. In addition, this enzyme activity was strongly inhibited by phenylmethanesulfonyl fluoride (PMSF), partially inhibited by p-bromophenacylbromide (p-BPB), uninhibited by iodoacetamide, and moderately stimulated by dithiothreitol (DTT). PAF-AH of CSF did not degrade phospholipid with a long chain fatty acyl group at sn-2 position. This enzyme hydrolyzed PAF and oxidatively modified phosphatidylcholine. Furthermore, we identified a monomeric polypeptide with a molecular weight of approximately 45 kDa by Western blot using human plasma PAF-AH antibody. These results suggested that plasma type PAF-AH activity exist in CSF taken from children with meningitis.

Partial Purification and Characterization of PAF Acetylhydrolase in Human Amniotic Fluid

  • Son, So-Young;Kim, So-Hee;Baek, Suk-Hwan;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.218-224
    • /
    • 1997
  • Platelet-activating factor (PAF) acetylhydrolase, which removes the acetyl moiety at the sn-2 position, has been found in human amniotic fluid. We purified this enzyme by ammonium sulfate precipitation, and sequential use of DEAE-Sepharose CL-6B, hydroxyapatite, chelating-Sepharose, and Mono Q column chromatographies. This enzyme exhibited broad pH optima and was unaffected by EDTA. Partially purified enzyme had a molecular weight of approximately 34 kDa on SDS-PAGE. In addition, the enzyme activity was inhibited by either diisopropylfluorophosphate(DFP) or p-bromophenacylbromide (p-BPB), suggesting that this enzyme possesses active serine and histidine residues. The enzyme showed similar activity towards PAF and oxidatively modified phosphatidylcholine, but didn't hydrolyze phosphatidylcholine or phosphatidylethanolamine with a long chain fatty acyl group at sn-2 position.

  • PDF

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.

The Effects of Hantaan Virus on the Expression of Platelet Activating Factor Receptor and on the Activity of Platelet Activating Factor Acetylhydrolase (한탄바이러스가 혈소판활성인자 수용체 발현 및 혈소판활성인자 분해효소 활성에 미치는 영향)

  • Hwang, Ji-Young;Park, Jong-Won;Hong, Sae-Yong;Park, Ho-Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Background : The central physiological derangement of hemorrhagic fever with renal syndrome (HFRS) caused by hantaan virus (HTNV) is a vascular dysfunction, manifested by hemorrhage, impaired vascular tone and increased vascular permeability. Platelet activating factor (PAF), whose actions are mediated through a specific receptor, is a potent bioactive lipid. PAF has diverse biological functions in the vascular system, such as increasing vascular permeability, adhesion of leukocytes to the endothelium and reduction of cardiac output, which result in hypotension and shock. The goal of the present study was to investigate whether PAF is involved in the pathogenesis of HFRS. For this purpose, we evaluated the effect of HTNV on the expression of PAF receptor (PAF-R) and on the activity of PAF-acetylhydrolase (PAF-AH) instead of PAF because PAF is rapidly degraded by PAF-AH in vivo. Materials and methods : To evaluate the expression of PAF-R, we performed reverse-transcription PCR, western blot and FACS analyses using HTNV-infected human umbilical vein endothelial cells (HUVECs) and non-infected (control) HUVECs. In addition, we measured the activity of plasma PAF-AH in HFRS patients and normal healthy persons. Results : The mRNA and protein expression of PAF-R was increased in HTNV-infected HUVECs compared with control HUVECs at 2 and 3 days post-infection (d.p.i.). FACS analysis showed that HTNV induced the surface expression of PAF-R in HUVECs from 2 d.p.i. The activity of plasma PAF-AH was 2.5-fold lower in HFRS patients than in normal healthy persons. Conclusion : Increased PAF-R expression by HTNV might increase the responsiveness to PAF in endothelial cells. Reduced PAF-AH activity in the blood of HFRS patients might delay PAF degradation. These results suggest that changes in PAF-R and PAF-AH by HTNV might influence to PAF activity and might be involved in the vascular dysfunction of HFRS.

  • PDF