• Title/Summary/Keyword: PACl

Search Result 42, Processing Time 0.015 seconds

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

Characterization of Synthetic Polymeric AI(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 화학적특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.711-716
    • /
    • 1999
  • This research explored the feasibility of preparing and utilizing a prefonned polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride and aluminum sulfate solutions did produce high yields of Al polymers useful to water treatment applications. The method of characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic Al species were divided into $monomeric(Al_a),\;polymeric(Al_b),\;and\;precipitate(Al_c)$ from the difference in reaction kinetics. The analysis of PACl's characteristics showed that the quantity of polymeric Al produced at value of$ r(OH_{added}/AI)=2.2$ was $83\%$ of the total aluminum in solution, as showing maximum contents and precipitated Al was dramatically increased when r was increased above 2.35. In addition, the characteristics of polyaluminum sulfate (PAS) showed that polymeric Al contained at r = 0.75 was $18\%$ of the total aluminum in solution. The synthesized PACI and PAS were stable during storing period, as indicating negligible aging effect. The effect of sulfate ion on PACI was dependent on the concentration of sulfate ion. That is, polymeric species decrease and precipitate species increase as sulfate ion concentration increased. It can be concluded that the sulfate cause the formation of $Al(OH)_{3(S)}$ at low pH. However, The effect of calcium ion was negligible for distribution of Al species.

  • PDF