• 제목/요약/키워드: PA-inhibitor

검색결과 65건 처리시간 0.024초

Heat shock protein 90 inhibitor AUY922 attenuates platelet-derived growth factor-BB-induced migration and proliferation of vascular smooth muscle cells

  • Kim, Jisu;Lee, Kang Pa;Kim, Bom Sahn;Lee, Sang Ju;Moon, Byung Seok;Baek, Suji
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.241-248
    • /
    • 2020
  • Luminespib (AUY922), a heat shock proteins 90 inhibitor, has anti-neoplastic and antitumor effects. However, it is not clear whether AUY922 affects events in vascular diseases. We investigated the effects of AUY922 on the platelet-derived growth factor (PDGF)-BB-stimulated proliferation and migration of vascular smooth muscle cells (VSMC). VSMC viability was detected using the XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reagent. To detect the attenuating effects of AUY922 on PDGF-BB-induced VSMCs migration in vitro, we performed the Boyden chamber and scratch wound healing assays. To identify AUY922-mediated changes in the signaling pathway, the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) 1/2 was analyzed by immunoblotting. The inhibitory effects of AUY922 on migration and proliferation ex vivo were tested using an aortic ring assay. AUY922 was not cytotoxic at concentrations up to 5 nM. PDGF-BB-induced VSMC proliferation, migration, and sprout outgrowth were significantly decreased by AUY922 in a dose-dependent manner. AUY922 significantly reduced the PDGF-BB-stimulated phosphorylation of Akt and ERK1/2. Furthermore, PD98059 (a selective ERK1/2 inhibitor) and LY294002 (a selective Akt inhibitor) decreased VSMC migration and proliferation by inhibiting phosphorylation of Akt and ERK1/2. Greater attenuation of PDGF-BB-induced cell viability and migration was observed upon treatment with PD98059 or LY294002 in combination with AUY922. AUY922 showed anti-proliferation and anti-migration effects towards PDGF-BB-induced VSMCs by regulating the phosphorylation of ERK1/2 and Akt. Thus, AUY922 is a candidate for the treatment of atherosclerosis and restenosis.

Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

  • Kim, Hae Jin;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.641-647
    • /
    • 2016
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high $K^+$ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-$N^G$-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling.

CXCL12-CXCR4 Promotes Proliferation and Invasion of Pancreatic Cancer Cells

  • Shen, Bo;Zheng, Ma-Qing;Lu, Jian-Wei;Jiang, Qian;Wang, Tai-Hong;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5403-5408
    • /
    • 2013
  • Objective: CXCL12 exerts a wide variety of chemotactic effects on cells. Evidence indicates that CXCL12, in conjunction with its receptor, CXCR4, promotes invasion and metastasis of tumor cells. Our objective was to explore whether the CXCL12-CXCR4 biological axis might influence biological behavior of pancreatic cancer cells. Methods: Miapaca-2 human pancreatic cancer cells were cultured under three different conditions: normal medium (control), medium + recombinant CXCL12 (CXCL12 group), or medium + CXCR4-inhibitor AMD3100 (AMD3100 group). RT-PCR was applied to detect mRNA expression levels of CXCL12, CXCR4, matrix metalloproteinase 2 (MMP-2), MMP-9, and human urokinase plasminogen activator (uPA). Additionally, cell proliferation and invasion were performed using CCK-8 colorimetry and transwell invasion assays, respectively. Results: CXCL12 was not expressed in Miapaca-2 cells, but CXCR4 was detected, indicating that these cells are capable of receiving signals from CXCL12. Expression of extracellular matrix-degrading enzymes MMP-2, MMP-9, and uPA was upregulated in cells exposed to exogenous CXCL12 (P<0.05). Additionally, both proliferation and invasion of pancreatic cancer cells were enhanced in the presence of exogenous CXCL12, but AMD3100 intervention effectively inhibited these processes (P<0.05). Conclusions: The CXCL12-CXCR4 biological axis plays an important role in promoting proliferation and invasion of pancreatic cancer cells.

등골나물 추출물이 인간의 유방암세포인 MDA-MB-231 세포의 이동, 침윤 및 부착에 미치는 영향 (Effect of Eupatorium japonicum Extract on the Metastasis, Invasion and Adhesion of MDA-MB-231 Human Breast Cancer Cells)

  • 우은영;박소영;권수진;권규택;김종대;임순성;윤정한
    • 한국식품과학회지
    • /
    • 제43권2호
    • /
    • pp.213-219
    • /
    • 2011
  • 등골나물은 국화과 여러해살이 식물로 한방에서는 고혈압, 폐렴, 황달, 홍역, 요통 등에 사용한다고 알려져 있다. 본 연구에서는 등골나물의 꽃 부위를 추출하여 등골나물 추출물이 유방암 세포인 MDA-MB-231 세포의 이동, 침윤 및 부착에 미치는 영향을 조사하였다. 그 결과 MDA-MB-231 세포의 이동, 침윤 및 부착은 등골나물 추출물의 농도($0-20{\mu}g/mL$)가 증가할수록 현저하게 감소하였다. 등골나물 추출물은 MMP-9, MMP-2의 활성을 억제하였고, TIMP-1의 발현은 감소시킨 반면 TIMP-2의 발현은 증가시켰다. 또한, 등골나물 추출물은 uPA, VEGF 그리고 ICAM의 mRNA 및 단백질 수준을 현저히 감소시켰다. 특히, 등골나물 헥산 분획물이 유방암세포의 이동을 현저하게 억제하였다. 이상의 결과로부터 등골나물 추출물은 MMP-9, MMP-2, uPA, TIMP-1 및 ICAM의 감소, TIPM-2의 증가를 통해 유방암세포의 전이를 억제하는 것으로 판단된다. 따라서 본 연구는 이러한 효능을 지닌 등골나물 추출물을 암전이에 효과가 있는 암예방제나 항암제로 개발할 수 있는 가능성을 제시한다.

Endoplasmic Stress Inhibition during Oocyte Maturation Improves Preimplantation Development of Cloned Pig Embryos

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.287-295
    • /
    • 2017
  • Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

흰쥐에서 단백질 분해효소 저해제, Nexin-1의 조직 및 생식기관 특이적 유전자 발현 (Tissue- and Reproductive Organ-specific Expression of Protease Nexin-1 in Sprague-Dawley Rat)

  • 고정재;김남근;김진규;최명진;정형민;서승염;김윤희;이현환;차광열
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.135-140
    • /
    • 1998
  • Protease nexin-1 (PN-1)은 활성화 자리에 serine기를 갖는 단백질 분해 효소 즉, 트롬빈, 트립신, 플라스미노겐 활성화 효소 등의 작용을 억제한다. 본 연구에서는 흰쥐의 Sprague-Dawley계통을 이용하여 조직별 mRNA발현여부 및 정도를 조사하였다. PN-1의 발현이 나타난 조직은 뇌 (전뇌, 후뇌), 심장, 간, 폐, 난소, 난관 등이다. 이들 중 유전자 발현이 가장 높은 조직은 암컷의 전뇌(forebrain) 였다. 특히, 생식기관들 중에서는 암컷의 난소와 난관에서만 발현이 관찰되는 등 PN-1 유전자는 성별에 따라 서로 다르게 발현됨이 확인되었다 이러한 결과들로 미루어 PN-1은 여포 형성과정과 초기배 형성과정 등의 생식 및 발생작용과 관련이 있을 것으로 생각된다.

  • PDF

Long-Term Effects of ACE Inhibitors in Post-Tuberculosis Emphysema

  • Kim, Myung-A;Lee, Chang-Hoon;Kim, Deog-Kyeom;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제69권6호
    • /
    • pp.418-425
    • /
    • 2010
  • Background: Little is known about the long-term effects of angiotensin-converting enzyme (ACE) treatment on post-tuberculosis emphysema. This study evaluated the effects of ACE inhibition on cardiac function and gas exchange in patients with post-tuberculosis emphysema. Methods: At baseline and at 6 months after initiation of ACE inhibition therapy, patients underwent pulmonary function testing, arterial blood gas analysis, and echocardiography, both at rest and post exercise. Cardiac output (CO) and right ventricular ejection fraction (RVEF) were measured at those time points as well. Results: After ACE inhibition; resting and post-exercise RVEF ($Mean{\pm}SEM,\;61.5{\pm}1.0,\;67.6{\pm}1.2%$, respectively) were higher than at baseline ($56.9{\pm}1.2,\;53.5{\pm}1.7%$). Resting and post-exercise CO ($6.37{\pm}0.24,\;8.27{\pm}0.34L/min$) were higher than at baseline ($5.42{\pm}0.22,\;6.72{\pm}0.24L/min$). Resting and post-exercise $PaO_2$ ($83.8{\pm}1.6,\;74.0{\pm}1.2mmHg$, respectively) were also higher than at baseline ($74.2{\pm}1.9,\;66.6{\pm}1.6mmHg$). Post-exercise $PaCO_2$($46.3{\pm}1.1mmHg$) was higher than at baseline ($44.9{\pm}1.1;\; Resting\;42.8{\pm}0.8\;vs.\;42.4{\pm}0.9mmHg$). Resting and post-exercise A-a $O_2$ gradient ($12.4{\pm}1.4,\;17.8{\pm}1.5 mmHg$) were lower than at baseline ($22.5{\pm}1.5,\;26.9{\pm}1.6mmHg$). Conclusion: In post-tuberculosis emphysema, RVEF and CO were augmented with a resultant increase in peripheral oxygen delivery after ACE inhibition. These findings suggest that an ACE inhibitor may have the potential to alleviate co-morbid cardiac conditions and benefit the patients with post-tuberculosis emphysema.

HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells

  • Park, Kang-Seo;Hong, Yong Sang;Choi, Junyoung;Yoon, Shinkyo;Kang, Jihoon;Kim, Deokhoon;Lee, Kang-Pa;Im, Hyeon-Su;Lee, Chang Hoon;Seo, Seyoung;Kim, Sang-We;Lee, Dae Ho;Park, Sook Ryun
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.660-665
    • /
    • 2018
  • Human epidermal growth factor receptor 2 (HER2) inhibitors, such as trastuzumab and lapatinib are used to treat HER2-positive breast and gastric cancers. However, as with other targeted therapies, intrinsic or acquired resistance to HER2 inhibitors presents unresolved therapeutic problems for HER2-positive gastric cancer. The present study describes investigations with AUY922, a heat shock protein 90 (HSP90) inhibitor, in primary lapatinib-resistant (ESO26 and OE33) and lapatinib-sensitive gastric cancer cells (OE19, N87, and SNU-216) harboring HER2 amplification/over-expression. In order to investigate whether AUY922 could overcome intrinsic and acquired resistance to HER2 inhibitors in HER2-positive gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (OE19/LR and N87/LR) by continuous exposure to lapatinib in vitro. We found that activation of HER2 and protein kinase B (AKT) were key factors in inducing intrinsic and acquired lapatinib-resistant gastric cancer cell lines, and that AUY922 effectively suppressed activation of both HER2 and AKT in acquired lapatinib-resistant gastric cancer cell lines. In conclusion, AUY922 showed a synergistic anti-cancer effect with lapatinib and sensitized gastric cancer cells with intrinsic resistance to lapatinib. Dual inhibition of the HSP90 and HER2 signaling pathways could represent a potent therapeutic strategy to treat HER2-positive gastric cancer with intrinsic and acquired resistance to lapatinib.

Inhibitors of AKT Signaling Pathway and their Application

  • WONG, Chin Piow
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.33-33
    • /
    • 2019
  • The AKT signaling pathway is a highly regulated cell signaling system that forms a network with other cell signaling pathways. Hence, the AKT signaling pathway mediates several important cellular functions that include cell survival, proliferation, cell migration, and et cetera. Irregularities that led overactive AKT signaling have been linked to many diseases such as cancer and metabolic-associated diseases. Hence, modulating the overactive AKT signaling pathway via inhibitor is a tantalizing prospect for treatment of cancer and metabolic-associated diseases. Two inhibitors of the AKT signaling pathway will be presented in this symposium: 1) Bisleuconothine A (BisA), a bisindole alkaloid that inhibit autophagy and 2) Ceramicine B (CerB), a limonoid that inhibit adipogenesis. The first topic is on a bisindole alkaloid, BisA and its mechanism in inducing autophagosome formation in lung cancer cell line, A549.(1) Since most autophagy inducing agents generally induce apoptosis, we found that BisA does not induce apoptosis even in high dose. BisA up-regulation of LC3 lipidation is achieved through mTOR inactivation. The phosphorylation of PRAS40, a mTOR repressor was suppressed by BisA. This observation suggested that BisA inactivates mTOR via suppression of PRAS40 phosphorylation. Interestingly, the phosphorylation of AKT, an upstream regulator of PRAS40 phosphorylation was also down-regulated by BisA. These findings suggested that Bis-A induces autophagosomes formation by interfering with the AKT-mTOR signaling pathway. The second topic is on CerB and its mechanism in inhibiting adipogenesis in preadipocytes cell line, MC3T3-G2/PA6.(2,3) CerB inhibits the phosphorylation of protein kinase B (AKT) at the Thr308 position but not the Ser473. Consequently, the phosphorylation of FOXO3 which is located downstream of AKT is also inhibited. Considering that FOXO3 is an important regulator of PPARγ which is a key factor in adipogenesis, CerB may inhibit adipogenesis via the AKT-FOXO3 signaling pathway. Taken together, both BisA and CerB highlighted the potential of AKT signaling pathway modulation as an approach to induce autophagy and inhibit the formation of fat cells, respectively.

  • PDF