• Title/Summary/Keyword: P92

Search Result 4,416, Processing Time 0.037 seconds

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

A Study on the Mechanical Property and Microstructure of SA213 P92 Boiler Pipe Steel (보일러 배관용 P92 파이프강의 기계적 특성 및 미세조직에 관한 연구)

  • Kim, Beom Soo;Son, Tae Ha;Min, Taek Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.777-783
    • /
    • 2012
  • The hardness and strength test was performed to make the manufacturing process of SA213 P92 boiler pipe steel. And the microstructure change was studied to find out the cause of room temperature property of P92 steel, ie, low hardness and strength property. The room temperature property of P92 steel depends on the improper normalizing and cooling rate. Especially, Ferrite was formed and the steel had low hardness when the temperature was decreased slowly under the cooling rate $1^{\circ}C$/min after normalizing at the temperature around $A_{c1}$ to $A_{c3}$. The critical heat treatment temperature and cooling rate was over $900^{\circ}C$ and over $10^{\circ}C$/min to satisfy the minimum yield and tensile stress which was laid down by ASME Code.

Physiochemical Properties of Binary Pluronic Systems for Reversal of Multi-drug Resistant (MDR) Cancers

  • Yun, Jung-Min;Park, Ga-Young;Kim, Ha-Hyung;Lee, Jae-Hwi;Lee, Eun-Seong;Youn, Yu-Seok;Lee, Beom-Jin;Oh, Young-Taik;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2010
  • Pluronic as pharmaceutical excipients are listed in the US and British Pharmacopoeia. In particular, Pluronics exist as different compositions and display abundant phases as self-assembling into polymeric micelles with various morphologies depending on the aqueous solvent quality, the composition of structure, and hydrophilic-lipophilic balance (HLB). Pluronics were also known as a P-gp modulator, which was exploited as a reversal molecule of multi-drug resistant (MDR) cancers. We selected a lamella forming Pluronic L92 which has high hydrophobicity and relatively long PEO block among L series of Pluronics. The dispersion of L92 showed great size particles and low stability. To increase the stability and to decrease the particle size, secondary Pluronics (F68, F88, F98, F127, P85, P105, and P123) with relatively long PEO chain were added into 0.1 wt% Pluronic L92 dispersion. The stability of binary systems was increased due to incorporated long PEO chain. Their particle sizes slightly decreased to over 200~400 nm and their solubilization capacity of binary systems didn't change except Pluronic L92/P123 mixtures. The L92/P123 systems showed ca. 100 nm sizes and lowest turbidity among the all systems. The solubilization capacity of 0.1 wt% L92/0.1 wt% P123 was slightly increased compared to 0.1 wt% L92 mono system and other binary systems. These nano-sized binary systems may have potential as alternative drug delivery systems with simple preparation method and overcome the drawbacks of mono systems such as low stability and loading capacity.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Characterization of Creep Resistance for HAZ Structures in Weldment of USC Power Plant (USC 발전설비 용접부 HAZ 조직의 내 크리프 특성)

  • Baek, Seung-Se;Park, Jeong-Hun;Lee, Song-In;Gwon, Il-Hyeon;Lee, Dong-Hwan;Yang, Seong-Mo;Yu, Hyo-Seon
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.250-252
    • /
    • 2005
  • T/P92 steels are created for using USC boiler tube and header in next generation power plant. SP-Creep test and tensile creep test are performed to characterize creep for local structures of T/P92 steel weldment. The results are shown that P92 steel weldment is clearly superior than that of X20CrMoV121 steel weldment, which is widely used in supercritical power Plant. while fine gram HAZ is most weakest in X20 steel weldment, coarse grain HAZ is most weakest in P92.

  • PDF

Effect of Incubation Period, Temperature and pH on Mycelial Growth of Cylindrocarpon destructans (Zinssm.) Scholten Causing Root-rot of Ginseng (배양기간, 온도, pH가 인삼 근부병균 Cylindrocarpon destructans (Zinssm.) Scholten의 균사생육에 미치는 영향)

  • 조대휘;안일평
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.181-187
    • /
    • 1995
  • Cylindvocarpon destmtalns isolate CY-92-01, pathogen of root-rot of Panax ginseng showed t the maximum mycelial growth on the Czapek solution agar among the thirteen kinds of media. Five isolates (Isolate CY-92-01, CY-92-03, CY-92-07, CY-94-01, CY-94-02) of C. destructan from various growth stages of p. ginseng recovered from several geographical sites also showed maximum growth in the Czapek-Dox broth compared with potato dextrose broth and V-8 juice broth. Rapid growth rate was maintained until 12 days after inoculation on the Czapek-Dox broth and mycelial weight was somewhat constant until 20 days. After 30 days of incubation, the mycelial weight began to decrease. The fungal growth occurred from 5$^{\circ}C$ to $25^{\circ}C$ and optimum temperature for growth was 2$0^{\circ}C$. Mycelial weight orderly decreased at 15, 25, 10, and 5$^{\circ}C$. Quantitative measurement was impossible at 5$^{\circ}C$. No fungal growth was occurred at the temperature higher than 3$0^{\circ}C$. Growth was observed at all tested pH ranges from 2.8 to 8.0. Optimum pH for growth was 4.0~5.0 followed by pH 3.3~3.5 and 5.4~6.0. The least growth occurred at pH 2.8.

  • PDF

Degradation of Aromatic Pollutants by UV Irradiation (UV조사에 의한 방향족오염물의 분해)

  • Min, Byoung-Chul;Kim, Jong-Hyang;Kim, Byung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.502-509
    • /
    • 1997
  • Aromatic pollutants(benzene, toluene, ethylbenzene and xylenes) were photodegraded by using a UV oxidation and the rates of degradation were investigated under various reaction conditions. Each of the solution containing 50 ppm benzene, 150 ppm ethylbenzene and 250 ppm xylenes was found UV-photodegraded over 90% in 1 hour of reaction time, wheras the only was 43 % degradation was obtained with 350 ppm toluene solution. A single component solution was more degradable than a mixed component solution and benzene was almost photodegraded at a pH 4.0, 6.4 and 10.0 after reaction time is 1 hr, ehtylbenzene was photodegraded about 92%(pH 4.0), 90%(pH 6.4) and 91%(pH 10.0), xylenes was photodegraded about 95%(pH 4.0), 90%(pH 6.4) and 92%(pH 10.0), but toluene was photodegraded about 80%(pH 4.0), 43%(pH 6.4) and 70%(pH 10.0), respectively. Kinetics studies show that the rate of decay in TOC(total organic carbon) were pseudo first-order rate except ethylbenzene, and then we could evaluate mineralization rate constants(k) of aromatics.

  • PDF