• Title/Summary/Keyword: P388cells

Search Result 108, Processing Time 0.022 seconds

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Inhibition of Cyclooxygenase-2 Activity and Prostaglandin E2 Production through Down-regulation of NF-κB Activity by the Extracts of Fermented Beans (발효 콩의 NF-κB 활성 억제를 통한 cyclooxgenase-2 활성과 prostaglandin E2 생성 억제)

  • Lee, Hye-Hyeon;Park, Cheol;Kim, Min-Jeong;Seo, Min-Jeong;Choi, Sung-Hyun;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.388-395
    • /
    • 2010
  • Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin $E_2$ ($PGE_2$), which has been demonstrated to play a critical role in inflammation. In the present study, we investigated the effects of the extracts of fermented beans including soybean (FS), black agabean (FBA) and yellow agabean (FYA), on the expression of COXs and production of $PGE_2$ in U937 human promonocytic cells. Treatment of phorbol 12-myristate 13-acetate (PMA) significantly induced pro-inflammatory mediators such as COX-2 expression and $PGE_2$ production, whereas the levels of COX-1 remained unchanged. However, pre-treatment with FS, FBA and FYA significantly decreased PMA-induced COX-2 protein as well as mRNA, which is associated with inhibition of $PGE_2$ production. Moreover, FS, FBA and FYA markedly prevented the increase of nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$) p65 by PMA. Our data indicate that the extracts of fermented beans exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-${\kappa}B$ signaling pathway.

Identification and Functional Analysis of SEDL-binding and Homologue Proteins by Immobilized GST Fusion and Motif Based Methods

  • Hong, Ji-Man;Jeong, Mi-Suk;Kim, Jae-Ho;Kim, Boog-il;Holbrook, Stephen R.;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.381-388
    • /
    • 2008
  • An X-linked skeletal disorder, SEDT (spondyloepiphyseal dysplasia tarda) is a genetic disease characterized by a disproportionately short trunk and short stature caused by mutations in the SEDL gene. This gene is evolutionarily conserved from yeast to human. The yeast SEDL protein ortholog, Trs20p, has been isolated as a member of a large multi-protein complex called the transport protein particle (TRAPP), which is involved in endoplasmic reticulum (ER)-to-Golgi transport. The interaction between SEDL and partner proteins is important in order to understand the molecular mechanism of SEDL functions. We isolated several SEDL-binding proteins derived from rat cells by an immobilized GST-fusion method. Furthermore, the SEDL-homologue proteins were identified using motif based methods. Common motifs between SEDL-binding proteins and SEDL-homologue proteins were classified into seven types and 78 common motifs were revealed. Sequence similarities were contracted to seven types using phylogenetic trees. In general, types I-III and VI were classified as having the function of acetyl-CoA carboxylase, glycogen phosphorylase, isocitrate dehydrogenase, and enolase, respectively, and type IV was found to be functionally related to the GST protein. Types V and VII were found to contribute to TRAPP vesicle trafficking.

Immunoadjuvant Activity of Korean Mistletoe Lectin B-chain (한국산 겨우살이 Lectin B-chain의 면역증강 효과)

  • Her, Sun-Mi;An, Hyo-Sun;Kim, Kyu-Dae;Kim, Young-Hoon;Kim, In-Bo;Yoon, Taek-Joon;Kim, Jong-Bae
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • Korean mistletoe Lectin (KML-C) is composed of A and B sub-chain. B chain binds to carbohydrates on cell surface and A chain hinders translation and induces an apoptosis as a RIP (ribosome inactivating protein). KML-C has very strong biological activities, it has seriously limits to use as a cancer therapy or adjuvant because of its toxicity to normal cells. This study is therefore conducted to see if B chain of KML-C might have immunological activity, especially adjuvant activities with less toxicity. We isolated B chain from KML-C using the lactose affinity chromatography, and examined their immunoadjuvant activity. The isolated B-chain did not show any cytotoxicity against tumor cell, RAW264.7, and P388D1 while KML-C had a very strong toxicity. This non-toxic effect was observed also by in-vivo study. Both humoral and cellular immunities were observed ; the antibody titer was increased when the mice were immunized with B-chain used as adjuvant like Freund's adjuvant, indicating that B chain of mistletoe lectin alone might be used for adjuvant; it also increased DTH in cellular immunity. These results suggest that B-chain of KML-C might be used for adjuvant used for the production of antibody or vaccine with less toxicity.

Growth Response of Strawberry Seedlings to Application of Solid Chlorella (고형 클로렐라 시비에 대한 딸기유묘의 생육 반응)

  • Young-Nam Kim;Jun Hyeok Choi;Hyeonji Choe;Keum-Ah Lee;Young-Eun Yoon;Vimalraj Kantharaj;Yong Bok Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.382-388
    • /
    • 2023
  • A liquid-type chlorella (LC) produced by self-cultivation is used for strawberry cultivation by farmers in Korea. This study aimed to investigate seedling growth in two strawberry cultivars 'Soraya' and 'Haruhi' after applying solid-type chlorella (SC) in the greenhouse for 30 d. The treatments were as follows: Control, LC (0.2% of 1.0 × 107 cells/mL), ¼ SC (12.5 g/m2), ½ SC (25 g/m2), and SC (50 g/m2). Compared to the control, in the ½ SC treatment, dry weight of the seedlings increased at 30 days after treatment (DAT). Phosphorus content in the leaves of 'Soraya' seedlings of the SC treatment increased compared to that of the control. At 10 and 30 DAT, photosynthetic pigments including chlorophylls and carotenoids in the seedlings of both cultivars increased with the ½ SC treatment. These results indicate that the application of SC improved the growth of strawberry seedlings and could replace LC.

Protective Effect of Selenium on Experimental Colon Carcinogenesis in Mice Fed a Low Iron Diet

  • Park, Hyun-Ji;Kim, Jun-Hyeong;Kang, Bong-Su;Nam, Sang-Yoon;Kim, Jong-Soo;Jeong, Jae-Hwang;Kim, Eun-Young;Lee, Beom-Jun;Yun, Young-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • Selenium (Se) is known to prevent from several cancers, while iron (Fe) is known to be associated with high risk of cancers. The role of Se on colon carcinogenesis was investigated in an animal model induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in low Fe mice. Six-week old ICR mice fed on a low Fe diet (4.5 ppm Fe; generally 10 times lower than normal Fe) with three different Se (0.02, 0.1 or 0.5 ppm) levels for 24 weeks. The animals received weekly three ($0{\sim}2^{nd}$ weeks) i.p. injections of AOM (10 mg/kg RW), followed by 2% DSS with drinking water for 1 week to induce the colon cancer. There were five experimental groups including vehicle, positive control (normal Fe level, AOM/DSS), Low Fe (LFe) + AOM/DSS+Low Se (LSe), LFe + AOM/DSS + medium Se (MSe) and LFe + AOM/DSS + high Se (HSe) groups. HSe group showed a 66.7% colonic tumor incidence, MSe group showed a 69.2% tumor incidence, and LSe group showed a 80.0% tumor incidence. The tumor incidence was negatively associated with Se levels of diets. Tumor multiplicity in Hse group was significantly low compared to the other groups (p < 0.05). With increasing Se levels of diets, the primary anti-proliferating cell nuclear antigen (PCNA)-positive cells were decreased and apoptotic bodies were increased in a dose-dependent manner. Se-dependent glutathione peroxidase activity and its protein level were dependent on the levels of Se of diets. Malondialdehyde level in liver was lowest in Hse group among experimental groups. These findings indicate that dietary Se is chemopreventive for colon cancer by increasing antioxidant activity and decreasing cell proliferation in Fe-deficient mice.

TWO COLORIMETRIC ASSAYS VERIFY THAT CALCIUM SULFATE PROMOTES PROLIFERATING ACTIVITY OF HUMAN GINGIVAL FIBROBLASTS

  • Chae, Min;Kim, Su-Yeon;Kim, Soo-Yeon;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.382-388
    • /
    • 2007
  • Statement of problem. The role of calcium sulfate in stimulating the growth of gingival soft tissue has been reported in few studies. Such a unique property of calcium sulfate could serve as a trouble-solving broker in compensating for the lack of soft tissues in various oral surgeries. Purpose. The purpose of this study was to compare the proliferating activities of human gingival fibroblasts seeded on various bone graft barrier materials of calcium sulfate, collagen, and polytetrafluorethylene (PTFE). Material and methods. Two calcium sulfates ($CAPSET^{(R)}$. and $CalForma^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA), a resorbable natural collagen ($Bio-Gide^{(R)}$, Geistlich Pharma Ag., Wolhusen, Switzerland), and a non-resorbable PTFE ($TefGen-FD^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA) served as the human gingival fibroblasts' substrates and comprised the four experimental groups, whereas the untreated floors of culture plastics were used in the control group, in this study. Cells were trypsinized, seeded, and incubated for 48 h. The proliferating activities of fibroblasts were determined by XTT and SRB assay and absorbance (optical density, OD) was measured. One-way ANOVA was used to analyze the differences in the mean OD values between the groups of CAPSET, CalForma, Bio-Gide, TefGen, and the control (p<0.05). Results. From the XTT assay, the mean OD value of the control group, the highest, was significantly greater than that of any of the four experimental groups followed by CalForma, CAPSET, TefGen, and Bio-Gide. Further, the mean OD value of CalForma, was significantly greater compared to that of Bio-Gide. From the SRB assay, Calforma showed the highest mean OD value, which was significantly greater than that of any other groups, followed by the control, CAPSET, Bio-Gide, and TefGen. The mean OD values of both the control and CAPSET were significantly greater compared to that of TefGen (p<0.05). Conclusion. Assessment of the viability and proliferation of cultured fibroblasts seeded and incubated for 48 h on various barrier-material substrates using XTT and SRB assay showed that calcium sulfate $CalForma^{(R)}$ promotes the proliferating activity of human gingival fibroblasts.

Effects of Microbacterium laevaniformans Levans Molecular Weight on Cytotoxicity

  • Oh, Im-Kyung;Yoo, Sang-Ho;Bae, In-Young;Cha, Jae-Ho;Lee, Hyeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.985-990
    • /
    • 2004
  • Levans produced from Microbacterium laevaniformans were isolated, characterized, and fractionated by molecular weight. TLC, HPLC, and GC-MS analyses of the exopolysaccharide showed that it was a fructan-type polymer and was composed of (2,6)- and (2,1)-glycosidic linkages. $^{13}C$-NMR analysis proved that the polysaccharide was mainly a $\beta$-(2,6)-linked levan-type polysaccharide. To investigate the cytotoxicity of the acetone-precipitated levan fractions such as M1, M2, and M3, HepG2, P388D1, U937, SNU-1, and SNUC2A cell lines were screened. Among the cell lines tested, the cytotoxicity of M1- M3 fractions were detected from only SNU-1 and HepG2 cells at the dosage level of $100-800\mu\textrm{g}ml$. The M2 fraction M_r$, 80,000) at 400 $mu{g/ml}$ had the greatest cell growth inhibition (84.6%) on SNU-1, while the M1 $(M_r$, 50,000) at $800\mu\textrm{g}ml$ showed the greatest (46.32%) on HepG2. To obtain more uniform M_r$ fractions of levan, the levan was further fractionated from S1 $(M_r$ 1,000,000) to S5 $(M_r$ 10,000) using gel permeation chromatography. Again, the S1-S5 fractions had strong cytotoxicity on SNU-1 and HepG2 cell lines. The greatest inhibition effects of S4 $(M_r$ 80,000) on SNU-1 and S5 $(M_r$ 10,000) on HepG2 were shown to be 49.5% and 73.0%, respectively. The cytotoxicity of the levan fractions was more effective on SNU-1 than on HepG2. Although the relationship between the Mw and the cytotoxicity was not clear, smaller $M_r$, fractions of levan showed greater growth inhibition effect on the cancer cell lines in general. Therefore, it was indicated that a specific Mw class of levan is responsible for the effective cytotoxicity.