• Title/Summary/Keyword: P2P Loan Default

Search Result 6, Processing Time 0.016 seconds

Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default (인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구)

  • Bae, Jae Kwon;Lee, Seung Yeon;Seo, Hee Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.207-224
    • /
    • 2018
  • In this article, an empirical study was conducted by using public dataset from Lending Club Corporation, the largest online peer-to-peer (P2P) lending in the world. We explore significant predictor variables related to P2P lending default that housing situation, length of employment, average current balance, debt-to-income ratio, loan amount, loan purpose, interest rate, public records, number of finance trades, total credit/credit limit, number of delinquent accounts, number of mortgage accounts, and number of bank card accounts are significant factors to loan funded successful on Lending Club platform. We developed online P2P lending default prediction models using discriminant analysis, logistic regression, neural networks, and decision trees (i.e., CART and C5.0) in order to predict P2P loan default. To verify the feasibility and effectiveness of P2P lending default prediction models, borrower loan data and credit data used in this study. Empirical results indicated that neural networks outperforms other classifiers such as discriminant analysis, logistic regression, CART, and C5.0. Neural networks always outperforms other classifiers in P2P loan default prediction.

Determining Personal Credit Rating through Voice Analysis: Case of P2P loan borrowers

  • Lee, Sangmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3627-3641
    • /
    • 2021
  • Fintech, which stands for financial technology, is growing fast globally since the economic crisis hit the United States in 2008. Fintech companies are striving to secure a competitive advantage over existing financial services by providing efficient financial services utilizing the latest technologies. Fintech companies can be classified into several areas according to their business solutions. Among the Fintech sector, peer-to-peer (P2P) lending companies are leading the domestic Fintech industry. P2P lending is a method of lending funds directly to individuals or businesses without an official financial institution participating as an intermediary in the transaction. The rapid growth of P2P lending companies has now reached a level that threatens secondary financial markets. However, as the growth rate increases, so does the potential risk factor. In addition to government laws to protect and regulate P2P lending, further measures to reduce the risk of P2P lending accidents have yet to keep up with the pace of market growth. Since most P2P lenders do not implement their own credit rating system, they rely on personal credit scores provided by credit rating agencies such as the NICE credit information service in Korea. However, it is hard for P2P lending companies to figure out the intentional loan default of the borrower since most borrowers' credit scores are not excellent. This study analyzed the voices of telephone conversation between the loan consultant and the borrower in order to verify if it is applicable to determine the personal credit score. Experimental results show that the change in pitch frequency and change in voice pitch frequency can be reliably identified, and this difference can be used to predict the loan defaults or use it to determine the underlying default risk. It has also been shown that parameters extracted from sample voice data can be used as a determinant for classifying the level of personal credit ratings.

Semi-Supervised Learning to Predict Default Risk for P2P Lending (준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구)

  • Kim, Hyun-jung
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigates the effect of the semi-supervised learning(SSL) method on predicting default risk of peer-to-peer(P2P) loans. Despite its proven performance, the supervised learning(SL) method requires labeled data, which may require a lot of effort and resources to collect. With the rapid growth of P2P platforms, the number of loans issued annually that have no clear final resolution is continuously increasing leading to abundance in unlabeled data. The research data of P2P loans used in this study were collected on the LendingClub platform. This is why an SSL model is needed to predict the default risk by using not only information from labeled loans(fully paid or defaulted) but also information from unlabeled loans. The results showed that in terms of default risk prediction and despite the use of a small number of labeled data, the SSL method achieved a much better default risk prediction performance than the SL method trained using a much larger set of labeled data.

The Importance of a Borrower's Track Record on Repayment Performance: Evidence in P2P Lending Market

  • KIM, Dongwoo
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.85-93
    • /
    • 2020
  • In peer-to-peer (P2P) loan markets, as most lenders are unskilled and inexperienced ordinary individuals, it is important to know the characteristics of borrowers that significantly impact their repayment performance. This study investigates the effects and importance of borrowers' past repayment performance track record within the platform to identify its predictive power. To this end, I analyze the detailed loan repayment data from two leading P2P lending platforms in Korea using a Cox proportional hazard, multiple linear regression, and logit models. Furthermore, the predictive power of the factors proxied by borrowers' track records are evaluated through the receiver operating characteristic (ROC) curves. As a result, it is found that the borrowers' past track record within the platform have the most important impact on the repayment performance of their current loans. In addition, this study also reveals that the borrowers' track record is much more predictive of their repayment performance than any other factor. The findings of this study emphasize that individual lenders must take into account the quality of borrowers' past transaction history when making a funding decision, and that platform operators should actively share the borrowers' past records within the markets with lenders.

Risk Analysis of Household Debt in Korea: Using Micro CB Data (개인CB 자료를 이용한 우리나라 가계의 부채상환위험 분석)

  • Hahm, Joon-Ho;Kim, Jung In;Lee, Young Sook
    • KDI Journal of Economic Policy
    • /
    • v.32 no.4
    • /
    • pp.1-34
    • /
    • 2010
  • We conduct a comprehensive risk analysis of household debt in Korea for the first time using the whole sample credit bureau (CB) data of 2.2 million individual debtors. After analysing debt service capacity profiles of debtor groups classified by the borrower characteristics such as income, age, occupation, credit scoring, and the type of creditor business companies, we investigate the impact of interest rate and income changes on debt service-to-income ratios (DTIs) and default rates of respective debtor groups. Empirical results indicate that debt service burdens are relatively high for low income wage earners, high income self-employed, low income capital and card loan holders, and high income mutual savings loan holders. We also find that debtors from multiple financial companies are particularly weak in their debt service capacity. The scenario analysis indicates that financial companies, with the current level of capital buffers, may be able to absorb negative consequences arising from the increase in DTIs and loan default rates if the interest rate and income changes remain modest. However, the negative consequences may fall disproportionately on non-bank financial companies such as capital, credit card, and mutual savings banks, whose debtors' DTIs are already high. We also find that the refinancing risk of household debt is relatively high in Korea as more than half of household mortgage debts are bullet loans. As the DTIs of mortgage loan holders are already high, under the current DTI regulation, mortgage loans may not be readily refinanced especially when the interest rate rises. Disruptions in mortgage loan refinancing may put downward pressure on housing prices, which may in turn magnify refinancing risk under the current loan-to-value (LTV) regulation. Overall our analysis suggests that, for more effective monitoring of household debt risk, it is necessary to combine existing surveillance schemes based on macro aggregate indicators with more comprehensive and detailed risk analyses based on micro individual data.

  • PDF

Construction of an Internet of Things Industry Chain Classification Model Based on IRFA and Text Analysis

  • Zhimin Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.215-225
    • /
    • 2024
  • With the rapid development of Internet of Things (IoT) and big data technology, a large amount of data will be generated during the operation of related industries. How to classify the generated data accurately has become the core of research on data mining and processing in IoT industry chain. This study constructs a classification model of IoT industry chain based on improved random forest algorithm and text analysis, aiming to achieve efficient and accurate classification of IoT industry chain big data by improving traditional algorithms. The accuracy, precision, recall, and AUC value size of the traditional Random Forest algorithm and the algorithm used in the paper are compared on different datasets. The experimental results show that the algorithm model used in this paper has better performance on different datasets, and the accuracy and recall performance on four datasets are better than the traditional algorithm, and the accuracy performance on two datasets, P-I Diabetes and Loan Default, is better than the random forest model, and its final data classification results are better. Through the construction of this model, we can accurately classify the massive data generated in the IoT industry chain, thus providing more research value for the data mining and processing technology of the IoT industry chain.