• 제목/요약/키워드: P.ginseng

검색결과 1,774건 처리시간 0.025초

볏짚퇴비 50년 연용에 따른 벼수량과 논토양 유기물함량 변화 (Changes in Rice Yield and Soil Organic Matter Content under Continued Application of Rice Straw Compost for 50 Years in Paddy Soil)

  • 연병열;곽한강;송요성;전희중;조현준;김창호
    • 한국토양비료학회지
    • /
    • 제40권6호
    • /
    • pp.454-459
    • /
    • 2007
  • 하성충적층을 모재로한 사양질인(강서통) 논토양에서 볏짚퇴비를 50년간(1954년~2003년) 연용 했을 때, 토양의 이화학적 특성과 벼의 생산성에 미치는 영향을 조사 분석한 결과는 다음과 같다 정조수량은 3요소구에 비하여 3요소+퇴비구에서 5~12% 증가된 반면, 무비구에서는 21~38% 감소되어 장기간 볏짚퇴비 시용으로 유의성 있는 수량의 증가 효과가 있었다. 벼의 수확기 경엽과 종실의 무기성분 흡수량은 볏짚퇴비를 시용한 구에서 T-N 15%, $P_2O_5$ 19%, $K_2O$ 35%, $SiO_2$ 48% 증가되었다. 토양물리성은 3요소구에 비하여 3요소+퇴비구에서 토양경도는 14.0 mm에서 13.1 mm로, 용적밀도는 $1.34g\;cm^{-3}$에서 $1.23g\;cm^{-3}$으로 유의하게 감소시킨 반면, CEC는 $9.0cmol_c\;kg^{-1}$에서 $11.2cmol_c\;kg^{-1}$$2.2cmol_c\;kg^{-1}$ 증가되었다. 토양유기물 함량은 무비구와 3요소구에서는 $20{\sim}23g\;kg^{-1}$, 퇴비구에서는 $33g\;kg^{-1}$ 부근에서 안정화되었다. 1973년(SOM $22g\;kg^{-1}$)~1995년(SOM $22g\;kg^{-1}$) 까지 23년간 3요소+퇴비구의 토양유기물 함량의 증가량은 $11g\;kg^{-1}$이었으며, 매년 볏짚퇴비 $7.5Mg\;ha^{-1}$을 시용하고 벼를 재배할 경우 1년에 증가되는 토양 유기물 함량은 $0.45g\;kg^{-1}$으로 투입된 퇴비의 6%정도가 토양유기물로 남는 것으로 조사되었다. 따라서, 이를 근거로 하여 사양질 토양에 대한 토양유기물함량에 따른 퇴비시용량을 하향 조정하였다.

비료산업(肥料産業)의 현황(現況)과 문제점(問題点) (Situation of Fertilizer Industry in Korea)

  • 이윤환
    • 한국토양비료학회지
    • /
    • 제15권1호
    • /
    • pp.34-48
    • /
    • 1982
  • 수입비료(輸入肥料)에만 의존(依存)하던 1960년(年) 이전(以前)의 비료공급(肥料供給)은 3요소균형시비(要素均衡施肥), 적기공급(適基供給)에 큰 혼란이 계속되었었으며 수요량(需要量)이 매년(每年) 증가(增加)되어 외화(外貨)의 소비(消費)가 점점 커져서 1961년(年)을 시작으로 요소공장(尿素工場)이 준공(埈工)되어 생산(生産)되기 시작하면서 1967~1968년(年)의 대규모공장(大規模工場)들이 생산(生産)하기에 이르러 비료(肥料)의 자급기(自給期)에 다달았다. 각(各) 공장(工場)들의 정상적(正常的)인 가동(稼動)으로 10~20%의 생산량(生産量)이 수출(輸出)되다가 1927년(年) 석유파동(石油波動)으로 소비량(消費量)이 급증(急增)되어 비료(肥料)가 부족(不足)하게 되었고 1973~4년(年)에 시설확장 및 증설(增設)로 충분(充分)히 공급(供給)되면서 다시 수출(輸出)이 재개(再開)되었다. 1977~8년(年)의 대규모공장(大規模工場)이 다시 준공(竣工)되면서 비료생산능력(肥料生産能力)은 질소(窒素)가 80만성분둔(万成分屯), 인산(燐酸)이 40만성분둔(万成分屯), 가리(加里)가 20만성분둔(万成分屯)까지 이르게 되었다. 1977~80년(年)에는 특수작물용(特殊作物用) 화성비료(化成肥料) 수요(需要)가 개발(開?)되어 공급(供給)되기 시작(始作)했으며 유기질비료(有機質肥料), 규산질비료(珪酸質肥料), 미량요소비료(微量要素肥料), 엽면살포용(葉面撒布用) 등의 다양(多樣)한 비종(肥種)이 공급(供給)되기 시작했다. 비료(肥料)의 소비(消費)는 질소(窒素)가 1964년(年)을 기점(基点)로 1975년(年)까지 연간(年間) 거의 균등(均等)하게 284천둔(千屯)씩 증가(增加)되었고, 인산(燐酸)은 7.7천둔(千屯), 가리(加里)는 7.5천둔(千屯)씩 1972년(年) 비료가수요기전(肥料假需要期前)까지 증가(增加)하다가 1973~5년(年)의 가수요기(假需要期)에는 인산(燐酸)이 평균(平均) 증가율(增加率)의 8배(倍) 가리(加里)가 7배(倍) 소비(消費)되어 약(約) 3 년간(年간) 계속(??)되었다. 1976년(年)에는 가수요구매량(假需要購買量)이 이월소비(移越消費) 되므로써 다시 3 성분(成分) 합계(合計) 20만성분둔(万成分屯)이 감소(減少)되었다가 1977~8년(年)에 서서히 증가(增加)하여 '75년(年)의 수준(水準)에 이르렀으며 질소(窒素)가 45만성분둔정도(万成分屯程度), 인산(燐酸)이 22만성분둔정도(万成分屯程度), 가리(加里)가 18만성분둔(万成分屯) 정도(程度)의 양(量)에서 정체(停?)되고 있다. 비종별(肥種別) 소비(消費)추세는 단비(?肥)에서 복비(複肥)로 점차 전환(?換)되며 복비소비량(複肥消費量) 증가(增加)는 균형시비(均衡施肥)가 이루어 질 수 있는 요인(要因)이었다. 생산(生産)은 1968년(年)에 소비량(消費量)을 초과(超過)한 양(量)이 생산(生産)되었으며 질시(窒素)는 1975년(年)까지 소비량(消費量) 이상(以上)이 계속생산(??生産)되었으나 인산(燐酸)은 1971~5년(年)까지 생산(生産)이 소비(消費)를 따르지 못했으며 1976년(年)을 계기(契機)로 질소(窒素), 인산(燐酸) 공(共)히 대규모(大規模) 시설(施設) 준공(竣工)으로 생산량(生産量)은 급상승(急上昇)하여 소비량(消費量)보다 질소(窒素)가 40만성분둔(万成分屯), 인산(燐酸)이 26만성분둔(万成分屯)이 많이 생산(生産)되었고 가리(加里)는 5~10만둔(万屯) 정도(程度) 부족(不足)했으며 1978~9년(年)의 최대(最大) 생산량(生産量)은 질소(窒素) 83만둔(万屯), 인산(燐酸)49만둔(万屯), 가리(加里) 13만둔(万屯)이었다. 공장별(工場別) 가동율(稼動率)은 전체적(全?的)으로 능력선(能力線)이 추지(推持)되었으나 1973~5년(年)의 소비(消費) 급증기간(急增期間) 120%까지 가동율(稼動率)이 높아졌으며 비종별(肥種別)로는 요소(尿素)가 대체(大?)로 90% 정도(程度), 복합비료(複合肥料)는 최고(最高) 170%까지 가동(稼動)되었고 '70년(年) 후반기(後半期)에 수요(需要) 감소(減少)로 전체공장(全?工場)의 가동율(稼動率)은 80%정도(程度)이었다. 비료수출(肥料輸出)은 1967년(年)에 시작되어 1972년(年) 비료(肥料) 가수요(假需要) 전(前)까지 꾸준히 신장(伸張)되어 약(約) 15만성분둔(万成分屯)까지 증가(增加)하여 생산량(生産量)의 20%를 상회(上廻)하더니 1973~5년(年) 가수요기(假需要期)에는 중단(中?)되었고 1976년(年)부터 재개(再開)되면서 점차 신장되어 1978~9년(年)에는 55만성분둔(万成分屯)으로 생산량(生産量)의 40%, 1980년(年)에는 67만성분둔(万成分屯)까지 증가(增加)하여 생산량(生産量)의 46%까지 이르렀으며 1981년(年)에는 1979년도(年度)의 2 차석유파동(次石油波動)에 의(依)한 자재비(資材費)의 상승(上昇)으로 국제(國際) 경쟁력(競爭力)이 약화(弱化)되어 35만성분둔(万成分屯)으로 떨어지기 시작했다. 주요(主要) 대상국(?象國)들은 요소(尿素)는 동남아지방(東南亞地方), 복비(複肥)는 중동(中東)이었으나 '81년(年)에는 동남아(東南亞)에서 화성비료(化成肥料)의 수요(需要)가 커지기 시작했고 대규모공장(大規模工場)도 화성비료(化成肥料) 수출(輸出)에 참여(參與)한 것이 특징(特徵)이라 하겠다. 수출전망(輸出展望)은 석유가(石油?)의 고가(高?)로 생산비(生産費)가 높고 1980년(年) 이후(以後)부터 천연(天然)개스 매장국(埋藏國)인 동남아지역(東南亞地域)의 대단위(大?位) 암모니아 합성공장(合成工場)이 가동(稼動)되면 수출시장(輸出市場)이 크게 감소(減少)될 것으로 예상된다. 비료(肥料)의 소비량(消費量)은 연간(年間) 30kg/10a선(線)으로 선진국(先進國) 소비량(消費量)과 비슷한 경향이나 경지이용율(耕地利用率)이 10% 감소(減少)한 (35만정보(万町步)) 반면 특용작물(特用作物), 채소(菜蔬), 과수등(果樹等)의 재배면적(栽培面積) 25만정보(万町步)증가(增加)가 소비증가(消費增加)를 유도(誘導)한 것으로 판단(判?)되며 수도작(水?作)의 신품종(新品種) 면적(面積) 확대(?大)가 수요증대(需要增大)를 크게 할 수 있을 것이다. 또한 일반(一般) 전작물(田作物)인 맥류(麥類), 서류(薯類), 두류(豆類)의 재배면적증대(栽培面積增大)가 촉구(促求)되어야 할 것이며 초지면적(草地面積)의 확대(?大)와 조림비료(造林肥料)는 비료(肥料)의 소비(消費)를 증대(增大)시킬 수 있는 미개척분야(未開拓分野)라고 할 수 있다.

  • PDF

순비기나무(Vitex rotundifolia L. fil.)의 부위별 정유성분 조성 (Essential Oil Composition from Leaves, Flowers, Stems, and Fruits of Vitex rotundifolia L. fil.)

  • 장수정;김영회;김명곤;김계환;윤세억
    • Applied Biological Chemistry
    • /
    • 제45권2호
    • /
    • pp.101-107
    • /
    • 2002
  • 순비기나무의 잎, 꽃, 줄기 및 열매로부터 수증기 증류법으로 정유를 분리한 다음 GC-MS 및 GC를 이용한 표준품과 머무름 시간의 비교에 의해 76종의 성분을 동정하였다. 동정된 성분은 monoterpene hydrocarbons 16종, oxygenated monoterpenes 30종, sesquiterpene hydrocarbons 10종, oxygenated sesquiterpenes 8종, diterpenes 3종, 기타 성분 9종으로서, 특히 ${\alpha}-pinene$, ${\beta}-pinene$, sabinene, 1,8-cineole, terpinen-4-ol, ${\alpha}-terpineol$등의 monoterpene류가 주요 구성성분들이었다. 부위별 주요 구성성분으로서 잎에서는 ${\alpha}-pinene$ (30.25%) > 1,8-cineole (19.89%) > sabinene (9.56%) > ${\alpha}-ternineol$ (7.94%) > ${\beta}-pinene$ (5.69%) > terpinen-4-ol (2.37%), 꽃에서는 ${\alpha}-pinene$ (25.47%) > 1,8-cineole (7.69%) > manoyl oxide(6.21%) > ${\beta}-pinene$ (4.20%) > ${\alpha}-terpineol$ (3.76%) >sabinene (2.78%), 줄기에서는 ${\alpha}-pinene$ (13.24%)>${\alpha}-terpineol$ (10.64%)>1,8-cineole (4.40%)>manoyl oxide (4.02%) > ${\beta}-pinene$ (2.39%) > terninen-4-ol (2.21%), 그리고 열매에서는 ${\alpha}-pinene$ (20.24%) > 1,8-cineole (11.47%) > ${\beta}-pinene$ (9.79%) > u-terpineol (7.08%) > sabinene (3.68%) limonene (2.77%)의 순서로 조성비율이 높았다. 전반적으로 순비기나무의 잎과 열매에서 분리한 정유에서는 monoterpene류의 조성비율이 높았으나 꽃과 줄기에서는 잎이나 열매에 비해 sesquitepene류, diterpene류 이외에도 구조를 동정하지 못하였으나 diterpene류 일 것으로 예상되는 분자량이 비교적 큰 성분들의 조성비율이 높았다.

홍삼 유래 성분들의 면역조절 효능

  • 조재열
    • 식품저장과 가공산업
    • /
    • 제8권2호
    • /
    • pp.6-12
    • /
    • 2009
  • 면역반응은 외부 감염원으로부터 신체를 보호하고 외부감염원을 제거하고자 하는 주요항상성 유지기전의 하나이다. 이들 반응은 골수에서 생성되고 비장, 흉선 및 임파절 등에서 성숙되는 면역세포들에 의해 매개된다. 보통 태어나면서부터 얻어진 선천성 면역반응을 매개하는 대식세포, 수지상 세포 등과, 오랜기간 동안 감염된 다양한 면역원에 대한 경험을 토대로 얻어진 획득성 면역을 담당하는 T 임파구 등이 대표적인 면역세포로 알려져 있다. 다양한 면역질환이 최근 주요 사망률의 원인이 되고 있다. 최근, 암, 당뇨 및 뇌혈관질환 등이 생체에서 발생되는 급 만성염증에 의해 발생된다고 보고됨에 따라 면역세포 매개성 염증질환에 대한 치료제 개발을 서두르고 있다. 또한 암환자의 급격한 증가는 암발생의 주요 방어기전인 면역력 증강에 대한 요구들을 가중시키고 있다. 예로부터 사용되어 오던 고려인삼과 홍삼은 기를 보호하고 원기를 회복하는 명약으로 알려진 대표적인 우리나라 천연생약이다. 특별히, 홍삼은 단백질과 핵산의 합성을 촉진시키고, 조혈작용, 간기능 회복, 혈당강하, 운동수행 능력증대, 기억력 개선, 항피로작용 및 면역력 증대에 매우 효과가 좋은 것으로 보고되고 있다. 홍삼에 관한 많은 연구에 비해, 현재까지 홍삼이 면역력 증강에 미치는 효과에 대한 분자적 수준에서의 연구는 매우 미미한 것으로 확인되어져 있다. 홍삼의 투여는 NK 세포나 대식세포의 활성이 증가하고 항암제의 암세포 사멸을 증가시키는 것으로 확인되어졌다. 현재까지 알려진 주요 면역증강 성분은 산성다당류로 보고되었다. 또 한편으로 일부 진세노사이드류에서 항염증 효능이 확인되어졌으며, 이를 통해 피부염증 반응과 관절염에 대한 치료 효과가 있는 것으로 추측되고 있다 [본 연구는 KT&G 연구출연금 (2009-2010) 지원을 받아 이루어졌기에 이에 감사드린다]. 면역반응은 외부 감염물질의 침입으로 유도된 질병환경을 제거하고 수복하는 중요한 생체적 방어작용의 하나이다. 이들 과정은 체내로 유입된 미생물이나 미세화학물질들과 같은 독성물질을 소거하거나 파괴하는 것을 주요 역할로 한다. 외부로 부터 인체에 들어온 이물질에 대한 방어기전은 현재 두 가지 종류의 면역반응으로 구분해서 설명한다. 즉, 선천성 면역 반응 (innate immunity)과 후천성 면역 반응 (adaptive immunity)이 그것이다. 선천성 면역반응은 1) 피부나 점막의 표면과 같은 해부학적인 보호벽 구조와 2) 체온과 낮은 pH 및 chemical mediator (리소자임, collectin류) 등과 같은 생리적 방어구조, 3) phagocyte류 (대식세포, 수지상세포 및 호중구 등)에 의한 phagocytic/endocytic 방어, 그리고 4) 마지막으로 염증반응을 통한 감염에 저항하는 면역반응 등으로 구분된다. 후천성 면역반응은 획득성면역이라고도 불리고 특이성, 다양성, 기억 및 자기/비자기의 인식이라는 네 가지의 특징을 가지고 있으며, 외부 유입물질을 제거하는 반응에 따라 체액성 면역 반응 (humoral immune response)과 세포성 면역반응 (cell-mediated immune response)으로 구분된다. 체액성 면역은 침입한 항원의 구조 특이적으로 생성된 B cell 유래 항체와의 반응과 간이나 대식세포 등에서 합성되어 분비된 혈청내 보체 등에 의해 매개되는 반응으로 구성되어 있다. 세포성 면역반응은 T helper cell (CD4+), cytotoxic T cell (CD8+), B cell 및antigen presenting cell 중개를 통한 세포간 상호 작용에 의해 발생되는 면역반응이다. 선천성 면역반응의 하나인 염증은 우리 몸에서 가장 빈번히 발생되고 있는 방어작용의 하나이다. 예를 들면 감기에 걸렸을 경우, 환자의 편도선내 대식세포나 수지상세포류는 감염된 바이러스 단독 혹은 동시에 감염된 박테리아를 상대로 다양한 염증성 반응을 유도하게 된다. 또한, 상처가 생겼을 경우에도 감염원을 통해 유입된 병원성 세균과 주위조직내 선천성 면역담당 세포들 간의 면역학적 전투가 발생되게 된다. 이들 과정을 통해, 주위 세포나 조직이 손상되면, 즉각적으로 이들 면역세포들 (주로 phagocytes류)은 신속하게 손상을 극소화하고 더 나가서 손상된 부위를 원상으로 회복시키려는 일련의 염증반응을 유도하게 된다. 이들 반응은 우리가 흔히 알고 있는 발적 (redness), 부종 (swelling), 발열 (heat), 통증 (pain) 등의 증상으로 나타나게 된다. 즉, 손상된 부위 주변에 존재하는 모세혈관에 흐르는 혈류의 양이 증가하면서 혈관의 직경이 늘어나게 되고, 이로 인한 조직의 홍반과, 부어 오른 혈관에 의해 발열과 부종이 초래되는 것이다. 확장된 모세혈관의 투과성 증가는 체액과 세포들이 혈관에서 조직으로 이동하게 하는 원동력이 되고, 이를 통해 축적된 삼출물들은 단백질의 농도를 높여, 최종적으로 혈관에 존재하는 체액들이 조직으로 더 많이 이동되도록 유도하여 부종을 형성시킨다. 마지막으로 혈관 내 존재하는 면역세포들은 혈판 내벽에 점착되고 (margination), 혈관벽의 간극을 넓히는 역할을 하는 히스타민 (histamine)이나 일산화질소(nitric oxide : NO), 프로스타그린딘 (prostagladins : PGE2) 및 류코트리엔 (leukotriens) 등과 같은 chemical mediator의 도움으로 인해 혈관벽 사이로 삼출하게 되어 (extravasation), 손상된 부위로 이동하여 직접적인 외부 침입 물질의 파괴나 다른 면역세포들을 모으기 위한 cytokine (tumor necrosis factor [TNF]-$\alpha$, interleukin [IL]-1, IL-6 등) 혹은 chemokine (MIP-l, IL-8, MCP-l등)의 분비 등을 수행함으로써 염증반응을 매개하게 된다. 염증과정시 발생되는 여러 mediator 중 PGE2나 NO 및 TNF-$\alpha$ 등은 실험적 평가가 용이하여 이들 mediator 자체나 생성관련효소 (cyclooxygenase [COX] 및 nitric oxide synthase [NOS] 등)들은 현재항염증 치료제의 개발 연구시 주요 표적으로 연구되고 있다. 염증 반응은 지속기간에 따라 크게 급성염증과 만성염증으로 나뉘며, 삼출물의 종류에 따라서는 장액성, 섬유소성, 화농성 및 출혈성 염증 등으로 구분된다. 급성 염증 (acute inflammation)반응은 수일 내지 수주간 지속되는 일반적인 염증반응이라고 볼 수 있다. 국소반응은 기본징후인 발열과 발적, 부종, 통증 및 기능 상실이 특징적이며, 현미경적 소견으로는 혈관성 변화와 삼출물 형성이 주 작용이므로 일명 삼출성 염증이라고 한다. 만성 염증 (chronic inflammation)은, 급성 염증으로부터 이행되거나 만성으로 시작된다. 염증지속 기간은 보통 4주 이상 장기화 된다. 보통 염증의 경우에는 염증 생성 cytokine인 Th1 cytokine (IL-2, interferone [IFN]-$\gamma$ 및 TNF-$\alpha$ 등)의 생성 후, 거의 즉각적으로 항 염증성 cytokine인 Th2 cytokine(IL-4, IL-6, IL-10 및 transforming growth factor [TGF]-$\beta$ 등)이 생성되어 정상반응으로 회복된다. 그러나, 어떤 원인에서든 면역세포에 의한 염증원 제거 반응이 문제가 되면, 만성염증으로 진행된다. 이 반응에 주로 작용을 하는 염증세포로는 단핵구와 대식세포, 림프구, 형질세포 등이 있다. 암은 전세계적으로 사망률 1위의 원인이 되는 면역질환의 하나이다. 산화적 스트레스나 자외선 조사 혹은 암유발 물질들에 의해 염색체내 protooncogene, tumor-suppressor gene 혹은 DNA repairing gene의 일부 DNA의 돌연변이 혹은 결손 등이 발행되면 정상세포는 암화과정을 시작하게 된다. 양성세포 수준에서 약 5에서 10여년 후 악성수준의 암세포가 생성되게 되면 이들 세포는 새로운 환경을 찾아 전이하게 되는데 이를 통해 암환자들은 다양한 장기에 동인 오리진의 암세포들이 생성한 종양들을 가지게 된다. 이들 종양세포는 정상 장기의 기능을 손상시켜며 결국 생명을 잃게 만든다. 이들 염색체 수준에서의 돌연변이 유래 암세포는 거의 대부분이 체내 면역시스템에 의해 사멸되는 것으로 알려져 있다. 그러나 계속되는 스트레스나 암유발 물질의 노출은 체내 면역체계를 파괴하면서 최후의 방어선을 무너뜨리면서 암발생에 무방비 상태를 만들게 된다. 이런 이유로 체내 면역시스템의 정상적 가동 및 증강을 유도하게 하는 전략이 암예방시 매우 중요한 표적으로 인식되면서 다양한 형태의 면역증강 물질 개발을 시도하고 있다. 인삼은 두릅나무과의 여러해살이 풀로써, 오랜동안 한방 및 민간에서 원기를 회복시키고, 각종 질병을 치료할 수단으로 사용되고 있는 대표적인 전통생약이다. 예로부터 불로(不老), 장생(長生), 익기(益氣), 경신(經身)의 명약으로 구전되어졌는데, 이는 약 2천년 전 중국의 신농본초경(神農本草經)에서 "인삼은 오장(五腸)을 보하고, 정신을 안정시키고, 혼백을 고정하며 경계를 멈추게 하고, 외부로부터 침입하는 병사를 제거하여주며, 눈을 밝게 하고 마음을 열어 더욱 지혜롭게 하고 오랫동안 복용하면 몸이 가벼워지고 장수한다" 라고 기술되어있는 데에서 유래한 것이다. 다양한 연구를 통해 우리나라에서 생산되는 고려인삼 (Panax ginseng)이 효능 면에서 가장 탁월한 것으로 알려져 있으며 특별이 고려인삼으로부터 제조된 고려홍삼은 전세계적으로도 그 효능이 우수한 것으로 보고되어 있다. 대부분의 홍삼 약효는 dammarane계열의 triterpenoid인 ginsenosides라고 불리는 인삼 saponin에 의해 기인된 것으로 알려져 있다. 이들 화합물군의 기본 골격에 따라, protopanaxadiol (PD)계 (22종) 및 protopanaxatriol (PT)계 (10종)으로 구분되고 있다 (표 1). 실험적 접근을 통해 인삼의 약리작용 이해를 위한 다양한 노력들이 경주되고 있으나, 여전히 많은 부분에서 충분히 이해되고 있지 않다. 그러나, 현재까지 연구된 인삼의 약리작용 관련 연구들은 심혈관, 당뇨, 항암 및 항스트레스 등과 같은 분야에서 인삼효능이 우수한 것으로 보고하고 있다. 그러나 면역조절 및 염증현상과 관련된 최근 연구결과들은 많지 않으나, 향후 다양하게 연구될 효능부분으로 인식되고 있다.

  • PDF