• 제목/요약/키워드: P. quinquefolius

검색결과 47건 처리시간 0.025초

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in ApcMin/+ mice

  • Yu, Chunhao;Wen, Xiao-Dong;Zhang, Zhiyu;Zhang, Chun-Feng;Wu, Xiaohui;He, Xin;Liao, Yang;Wu, Ningning;Wang, Chong-Zhi;Du, Wei;He, Tong-Chuan;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.230-237
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of death worldwide. Chronic gut inflammation is recognized as a risk factor for tumor development, including CRC. American ginseng is a very commonly used ginseng species in the West. Methods: A genetically engineered $Apc^{Min/+}$ mouse model was used in this study. We analyzed the saponin composition of American ginseng used in this project, and evaluated its effects on the progression of high-fat-diet-enhanced CRC carcinogenesis. Results: After oral ginseng administration (10-20 mg/kg/d for up to 32 wk), experimental data showed that, compared with the untreated mice, ginseng very significantly reduced tumor initiation and progression in both the small intestine (including the proximal end, middle end, and distal end) and the colon (all p < 0.01). This tumor number reduction was more obvious in those mice treated with a low dose of ginseng. The tumor multiplicity data were supported by body weight changes and gut tissue histology examinations. In addition, quantitative real-time polymerase chain reaction analysis showed that compared with the untreated group, ginseng very significantly reduced the gene expression of inflammatory cytokines, including interleukin-$1{\alpha}$ (IL-$1{\alpha}$), IL-$1{\beta}$, IL-6, tumor necrosis factor-${\alpha}$, granulocyte-colony stimulating factor, and granulocyte-macrophage colony-stimulating factor in both the small intestine and the colon (all p < 0.01). Conclusion: Further studies are needed to link our observed effects to the actions of the gut microbiome in converting the parent ginsenosides to bioactive ginseng metabolites. Our data suggest that American ginseng may have potential value in CRC chemoprevention.

Development of an ISSR-Derived SCAR Marker in Korean Ginseng Cultivars (Panax ginseng C. A. Meyer)

  • Lee, Jei-Wan;Kim, Young-Chang;Jo, Ick-Hyun;Seo, A-Yeon;Lee, Jeong-Hoon;Kim, Ok-Tae;Hyun, Dong-Yun;Cha, Seon-Woo;Bang, Kyong-Hwan;Cho, Joon-Hyeong
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.52-59
    • /
    • 2011
  • Recently, new ginseng cultivars having superior agricultural traits have been developed in Korea. For newly developed plant cultivars, the identification of distinctiveness is very important factors not only in plant cultivar management but also in breeding programs. Thus, eighty-five inter simple sequence repeat (ISSR) primers were applied to detect polymorphisms among six major Korean ginseng cultivars and two foreign ginsengs. A total of 197 polymorphic bands with an average 5.8 polymorphic bands and 2.9 banding patterns per assay unit across six Korean ginseng cultivars and foreign ginsengs from 236 amplified ISSR loci with an average 6.9 loci per assay unit were generated by 34 out of 85 ISSR primers. Three species of Panax ginseng including the Korean ginseng cultivars, P. quinquefolius, and P. notoginseng, could be readily discriminated using most tested primers. UBC-821, UBC-868, and UBC-878 generated polymorphic bands among the six Korean ginseng cultivars, and could distinguish them from foreign ginsengs. Sequence characterized amplified region (SCAR) marker system was introduced in order to increase the reproducibility of the polymorphism. One SCAR marker, PgI821C650, was successfully converted from the randomly amplified polymorphism by UBC-821. It showed the expected dominant polymorphism among ginseng samples. In addition, the specific polymorphism for Sunwon was generated by treating Taq I restriction enzyme to polymerase chain reaction products of PgI821C650. These results will serve as useful DNA markers for identification of Korean ginseng, especially Sunwon cultivar, seed management, and molecular breeding program supplemented with marker-assisted selection.

A Role for Ginseng in the Control of Postprandial Glycemia and Type 2 Diabetes

  • Vuksan Vladimir;Sievenpiper John L;Xu Zheng;Zdravkovic Uljana Beljan;Jenkins Alexandra L;Arnason John T;Bateman Ryon M.;Leiter Lawrence A;Josse Robert G;Francis Thomas;Stavro Mark P
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.1-19
    • /
    • 2002
  • The use of herbals has increased considerably while their efficacy and safety remain untested. This unsupported surge in demand has prompted a call for their clinical evaluation. One area in which evaluations are emerging is ginseng and diabetes. Growing evidence is accumulating from in vitro and animal models indicating that various ginseng species, American (Panax quinquefolius L), Asian (Panax ginseng C.A. Meyer), Korean Red, San-chi (Panax notoginseng [Burk.] P.R. Chen), and the non-panax species Siberian (Eleutherococcus senticossus) ginsing, and their fractions, saponins (ginsenosides) and peptidoglycans (panaxans for panax species and eleutehrans for Siberian ginseng), might affect carbohydrate metabolism and related signaling molecules. Recent human studies from our laboratory have also shown a blood glucose lowering effect of American ginseng (AG) and some other ginseng spices postprandially after acute administration and chronically after administration for 8-weeks in people with type 2 diabetes. Although generally encouraging, these data only indicate a need for more evaluations of ginsengs safety and efficacy. Because of poor industry standardization, it is not known whether all ginsengs will affect blood glucose. In this regards some ginseng batches have demonstrated null effects while others have even raised postprandial glycemia. Clinical research should therefore focus on components involved in its glucose lowering effects.

  • PDF

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1978년도 학술대회지
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF