• 제목/요약/키워드: P. brasilianum

검색결과 4건 처리시간 0.024초

First Report of Penicillium brasilianum and R. daleae Isolated from Soil in Korea

  • Cho, Hye-Sun;Hong, Seung-Beom;Go, Seung-Joo
    • Mycobiology
    • /
    • 제33권2호
    • /
    • pp.113-117
    • /
    • 2005
  • In this study, a total of 300 isolates of Penicillium and related teleomorphic genera were collected from soils of 17 locations in Korea from April to May, 2004. Ninety four isolates were identified as the species of Penicillium subgenus Furcatum based on cultural and morphological characteristics and ${\beta}-tubulin$ gene sequences. Among the specie's, Korean isolates of P. brasilianum Bat. and P. daleae K. M. Zalessky were phylogenetically identical to the reference species based on DNA sequence of the ${\beta}-tubulin$ gene. Here we described and illustrated P. brasilianum and P. daleae that are new in Korea.

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

18S rDNA를 이용한 인삼(Panax ginseng)의 내생균근 균의 동정 (Identification of Arbuscular Mycorrhizal Fungi Colonizing Panax ginseng Using 18S rDNA Sequence)

  • 어주경;김동훈;정현숙;엄안흠
    • Applied Biological Chemistry
    • /
    • 제47권2호
    • /
    • pp.182-186
    • /
    • 2004
  • 아바스큘라 내생균근(arbuscular mycorrhizae, AM) 균은 대부분의 육상식물 뿌리와 공생하며, 식물의 성장에 도움을 주는 균이다. 인삼은 다년생 식물로서 뿌리를 약재로 사용하는 대표적인 약재 중 하나이다. 본 연구에서는 우리나라 8개 지역에서 인삼을 채집하여 AM 균을 염색을 통하여 형태적으로 관찰하고, 분자생물학적인 방법을 사용하여 뿌리내에 공생하는 다양한 AM 균을 확인하였다. 인삼의 뿌리에 감염되어 있는 AM 균을 염색하여 형태적으로 관찰한 결과 감염률이 낮고 흐리게 염색되었다. 또한 균사와 vesicle 이 발견되었고 이들은 Arum type 으로 판단되지만 arbuscule을 관찰하지 못했기 때문에 Arum-type으로 단정하기는 어려웠다. 식물 내에 공생하는 AM균들의 종류를 확인하기 위하여 채집된 인삼의 뿌리에서 내생균근 균의 DNA를 AM균에 특이적인 18s rDNA primer를 이용한 nested PCR을 수행하여 AM 균의 18S rDNA중 일부를 확보하였다. 증폭된 DNA는 클로닝을 통해서 개별 내생균근 균 종의 염기서열들로 분리하였고, 이들은 AluI, HinfI과 같은 제한 효소를 사용하여 RELP하였다. RELP 패턴에 따라 그룹을 나누어, 각 그룹에서 1개씩 염기서열 분석을 수행하였다. 염기서열은 기존의 서열과의 유사성과 계통 관계의 분석을 통하여 모두 AM균인 것으로 확인되었고, 다음 2개의 종과 가장 유사한 것으로 판단되었다; Paraglomus brasilianum, Glomus spurcum이 중 Paraglomus에 속하는 종인 P. brasil-ianum. 이 인삼의 뿌리에서 공통적으로 관찰되어 이들 균과 인삼과의 특이적 관계에 관하여 추측할 수 있었고, G. spurcum은 유사한 것으로 분석된 염기서열들이 계통도 상에서 특이한 분지를 형성하는 것으로 나타났는데, 이들 분지에 대해서는 확충된 염기서열들과 비교 분석과 같은 연구가 필요한 것으로 생각된다.

Penicillium Diversity from Intertidal Zone in Korea

  • Park, Myung Soo;Lee, Seobihn;Oh, Seung-Yoon;Lim, Young Woon
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.11-11
    • /
    • 2016
  • Penicillium species are commonly isolated from various outdoor and indoor environments, including marine environments such as sponges, algae and sand. Penicillium is especially important because numerous bioactive compounds have been isolated. Penicillium was the most common species in intertidal zone in Korea, however the diversity and ecological roles of Penicillium in intertidal zone are not clarified. We explored diversity and ecological roles of marine-derived Penicillium from tidal flat and sea sand in Korea. The diversity of marine-derived Penicillium from Korea was investigated using both culture-dependent and culture-independent approach by ${\beta}$-tubulin sequence. In addition, we evaluated optimal temperature, halo-tolerance, and enzyme activity of Penicillium strains, such as extracellular alginase, endoglucanase, ${\beta}$-glucosidase, and protease. For culture-dependent approach, a total of 182 strains of 62 Penicillium species were isolated, with 53 species being identified. The most common species was Penicillium oxalicum, followed by P. crustosum, P. brasilianum, P. koreense, and P. griseofulvum. Species richness and composition were not significantly different by season, substrates, and seaside. For culture-independent approach using Illumina sequencing, 73 OTUSs were detected. The most frequently observed species was P. antarcticum, followed by P. koreense, P. crustosum, and P. brevicompactum. Diversity of Penicillium was higher during winter season than during summer season and in western sea than in southern sea, respectively. Community structure was significantly different by season and sea side. 52 species were detected by both methods. Unique species were isolated from each of methods - 10 from culture methods and 21 from Illumina sequencing. Furthermore, salinity adaption of the Penicillium varied depending on species. Many Penicillium species showed endoglucanase, ${\beta}$-glucosidase, and protease activity. Some species including P. paneum and P. javanicum degraded the polycyclic aromatic hydrocarbons. Thus, our results demonstrate that intertidal zone in Korea harbors diverse Penicillium community and marine-derived Penicillium play important ecological roles as decomposers of organic material in marine environments.

  • PDF