• Title/Summary/Keyword: P-base concentration

Search Result 288, Processing Time 0.026 seconds

$CO_2$ Buffering and Hydrogen Ion Concentration Gradient across Cell Membrane in Acute Acid-Base Disturbances in Dogs (혈액과 조직의 $CO_2$완충능 및 세포막을 통한 $H^+$농도 경사)

  • Hwang, Sang-Ik;Park, Young-Bae;Min, Byoung-Ku;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.119-124
    • /
    • 1983
  • The in vivo and in vitro buffer capacities of true plasma and tissue buffer capaciies were compared on dogs. Intracellular pH was determined on skeletal muscle by a modification of the method of Schloerb and Grantham using $C^{14}$ DMO. The in vivo curve for plasma or extracellular fluid has a much lower slope than the in vitro curve. The in vivo slope of skeletal muscle in the dog is approximately 20 sl. The slope for skeletal muscle in vivo falls between the in vitro and in vivo slopes of true plasma. It appears that intracellular hydrogen ion varies linearly with extracellular hydrogen ion when $CO_2$ tension is changed. Both hydrogen ion gradient and Hi/He ratio vary in skeletal muscle, with an increase in $CO_2$ tension. Infusion of 0.3N HCl gave two distinct patterns, the $H_i-H_e$ gradient decreased; and it would appear that very little hydrogen ion as such penetrated to the inside of the cells during the time of observation. Although lactic acid presumably enters the cell and the same of larger load was given as was used for hydrochloric acid, only very mild intracellular acidosis resulted, ostensibly due to metabolism of this substrate. Gluconic acid produced a more severe acidosis, both intracellularly and extracellularly, but with both of these acids the hydrogen ion gradient decreased and the $H_i/H_e$ ratio also decreased. The experiments on the dogs with hemorrhagic shock the hydrogen ion increase producing the acidosis originates inside the cells. Even so, the hydrogen ion gradient increased only very slightly in the acute experiments. This may suggest that even over short intervals of time skeletal muscle cells have a capacity to pump out hydrogen ions at a rate which maintains approximately the normal $H_i/H_e$ gradient when the source of the hydrogen ion is in the interior of the cell.

  • PDF

Analysis of the Effects of Bone Marrow Biopsy Decalcification Methods on Histopathological Examination (골수생검조직의 조직병리검사에서 탈회방법에 따른 결과 분석)

  • Park, Ji Young;Han, Kyung Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.371-377
    • /
    • 2016
  • Decalcification is routinely performed to obtain a pathological diagnosis using bone marrow biopsy. During the decalcification process using a conventional acidic solution, such as HCl, the antigenicity of tissue is damaged. Especially DNA and RNA in the bone marrow are impaired. Hence, there is the need for a standardized decalcification protocol that preserves the antigenicity of tissue. To this end, we compared the effects of two commonly used decalcifiers: Commercial decalcifier (Calcl-Clear Rapid, HCl) and the EDTA (12.5%, pH 7.0). Bone marrow biopsies sampled from 71 patients were decalcified in accordance with the protocols of respective groups-HCI versus EDTA. The differences of decalcification protocols were analyzed with respect to Hematoxylin & Eosin staining, Gomori'sreticulum staining, and immunohistochemical staining and molecular analysis. Immunohistochemical staining used Ki-67, CD20 and CD138 as primary antibodies and molecular analysis was conducted through the DNA concentration analysis, in situ hybridization (ISH) and immunoglobulin heavy chain (IGH) gene rearrangement. On the routine histopathology analysis, there was no difference between HCl and EDTA. Moreover, in case of immunohistochemical staining, the cytoplasmic membrane or cytoplasmic CD markers was well preserved. However, nuclear proteins, such as Ki-67, were stained with low quality. Conversely, according to the molecular analysis, the EDTA protocol preserved the DNA and RNA compared with the HCI. The differences of DNA quantity and quality were statistically significant between protocols of HCl and EDTA. We used 38 cases in HCl and 12 cases in EDTA. Consequently, the EDTA protocol maintains the antigenicity of the protein on tissue and is acceptable for examination with molecular base analysis. Decalcification of bone marrow biopsy by EDTA is highly recommended for the examination of immunohistochemical staining and molecular analysis.

Improving the Chitinolytic Activity of Bacillus pumilus SG2 by Random Mutagenesis

  • Vahed, Majid;Motalebi, Ebrahim;Rigi, Garshasb;Noghabi, Kambiz Akbari;Soudi, Mohammad Reza;Sadeghi, Mehdi;Ahmadian, Gholamreza
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1519-1528
    • /
    • 2013
  • Bacillus pumilus SG2, a halotolerant strain, expresses two major chitinases designated ChiS and ChiL that were induced by chitin and secreted into the supernatant. The present work aimed to obtain a mutant with higher chitinolytic activity through mutagenesis of Bacillus pumilus SG2 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on chitin agar and subsequent formation of halos, the mutated strains were examined for degradation of chitin under different conditions. A mutant designated AV2-9 was selected owing to its higher chitinase activity. To search for possible mutations in the whole operon including ChiS and ChiL, the entire chitinase operon, including the intergenic region, promoter, and two areas corresponding to the ChiS and ChiL ORF, was suquenced. Nucleotide sequence analysis of the complete chitinase operon from the SG2 and AV2-9 strains showed the presence of a mutation in the catalytic domain (GH18) of chitinase (ChiL). The results demonstrated that a single base change had occurred in the ChiL sequence in AV2-9. The wild-type chitinase, ChiL, and the mutant (designated ChiLm) were cloned, expressed, and purified in E. coli. Both enzymes showed similar profiles of activity at different ranges of pH, NaCl concentration, and temperature, but the mutant enzyme showed approximately 30% higher catalytic activity under all the conditions tested. The results obtained in this study showed that the thermal stability of chitinase increased in the mutant strain. Bioinformatics analysis was performed to predict changes in the stability of proteins caused by mutation.

Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress (잔류응력을 고려한 압연강 용접구조물의 X-ray 회절법에 의한 파괴 역학적 고찰)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1179-1185
    • /
    • 2011
  • Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ${\Delta}P-N_f$ relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints.

Removal Efficiency of Organic Iodide on Silver Ion-Exchanged Yeolite and TEDA-AC at High Temperature Process (고온공정에서 은교환 제올라이트 및 TEDA 첨착활성탄의 유기요오드 제거성능)

  • 최병선;박근일;김성훈;윤주현;배윤영;지성균;양호연;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2003
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to 25$0^{\circ}C$ by TEDA-impregnated activated carbon and silver-ion exchanged zeolite(AgX-10), which are used for radioiodine retention in nuclear facility, were experimentally evaluated. In the range of temperature from 3$0^{\circ}C$ to 25$0^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the residual amount of methyl iodide after desorption on TEDA-AC represented 30% lower value than that on AgX-10. However, it can be used as an adsorbent for the removal of methyl iodide up to 15$0^{\circ}C$ if it is preventing explosion by Ignition. The breakthrough curves of methyl iodide in the fixed bed packed with AgX-10 uP to 40$0^{\circ}C$ were compared upon the effects of bed temperatures, bed depth and input concentration of methyl iodide. Removal mechanism of methyl iodide on AgX-10 was proposed, based on the analysis of by-product gas generated from adsorption reaction.

  • PDF

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Influence of Physico.Chemical Properties of Root Substrates on the Growth of Mother Plants and the Occurrence of Daughter Plants during the Propagation of 'Maehyang' Strawberry Using a Bag Culture System ('매향' 딸기 번식을 위한 플라스틱 백 재배시 상토 물리.화학성이 모주생육과 자묘 발생에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Ko, Kwan-Dal;Lee, Chi-Won W.
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • The objective of this research was to determine the influence of the physical and chemical properties of root substrates used during the production of 'Maehyang' strawberry propaguleson the growth of the mother plants and the rate of daughter plant formation. Plants were cultured in plastic bags containing six different formulations of root substrates composed of: a) 50% coir dust and 50% perlite (5:5 by volume, A), b) 60% coir dust and 40% perlite (6:4, B), c) 70% coir dust and 30% perlite (7:3, C), d) 70% coir dust and 30% coconut chip (7:3 D), e) 60% coir dust and 40% coconut chip (60:40, E), or f) 50% sphagnum peat and 50% vermiculite (50:50, F). All media formulations contained a moderate level of base fertilizers. Physical and chemical properties of each formulation were determined before plant establishment and after 120 days of stock plant culture and runner production. Total porosity (TP) and container capacity (CC) of all substrate formulations were higher than 85% and 55%, respectively, allowing a suitable range of air and water holding characteristics. Formulation F provided the highest TP and CC values among the all substrate modifications evaluated. Substrate formulations A, B, C and F had higher electrical conductivity (EC) and $NO_3{^-}$-N concentrations than formulations D and E, when determined before and after plant culture. Formulations A, B, C, and F, having higher EC readings, also performed better as root substrates thanthe formulations D and E in increasing fresh and dry weights of the runners as well as the production of daughter plants per plant. The 'Maehyang' strawberry plants grown in the formulation F had the highest tissue N content, followed by those grown in substrate B, A, C, or D for 120 days after transplanting. Formulation F also facilitated accumulation of higher tissue phosphorus (P) and copper (Cu) contents compared to other treatments. Results of this experiment suggest that the chemical properties, rather than physical properties, of root substrates had a major influence on the growth of mother plants and the occurrence of healthy daughter plants during the bag-culture phase of propagation.

A Study on Dimethacryloyloxy Alkane Derivatives Having an Anti-wear Performance as Lubricating Oil Additives (윤활유첨가제로써 마모억제 성능을 갖는 Dimethacryloyloxy Alkane 유도체에 관한 연구)

  • Han, Hye-Rim;Cho, Jung-Eun;Sim, Dae-Seon;Kang, Chung-Ho;Kim, Young-Wun;Jeong, Noh-Hee;Kang, Ho-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.583-589
    • /
    • 2016
  • Lubricant additives including zinc dialkyldithiophosphate (ZDDP) containing metal have been widely used due to the advantage of very low cost, but they can generate impurities such as ash. In this work, ZDDP containing metals was partially replaced with bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4s) which was synthesized conveniently and effectively from alkanediol without any metal components. Also, the wear resistance property of synthesized BAP4s were studied. Wear scar diameter (WSD) values of BAP4s with butyl, octyl, decyl, dodecyl or tetradecyl groups were also measured by four-ball test. As the length of the alkyl group increased from 4 to 8, the WSD value of BAP4s decreased rapidly from 0.59 to 0.45 mm, but from 8 to 14, the value increased very slowly from 0.45 to 0.50 mm. Thus, among all BAP4s, B8P4 having BAP4 with the octyl group, showed the lowest WSD value. Furthermore, the WSD values were measured in a lubricant base oil mixed with a 0.50 percent concentration (w/w) of either BAP4 or ZDDP. The former was 0.55 mm, and the latter was 0.45 mm. The thermal stability and tribofilm formation peroperty were also measured by thermogravimetric analyzer (TGA) and energy-dispersive X-rays spectroscopy (EDS), respectively.

The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu (Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Park, M.H.;Bae, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy is cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-20Pd-20Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electic furace and centrifugal casting machine in Ar atmoshpere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age-hardening characteristics of the small Au-containing Ag-pPd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, emergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, I. e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the Llo type face centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affedted by the Cu concentration. In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase(L1o type) and an Agrich ${\alpha}2$ phase occurred and a discontiunous precipitation occurred at the grain boundary. Form the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}1+{\alpha}2+PdCu$ at Pd/Cu = 1 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Effect of Soil Water Potential on Pysico-Chemical Properties of Soil and Cucumber(Cucumis sativus L.) Growth (토양(土壤) 수분(水分)포텐셜이 오이(Cucumis sativus L.)생육(生育)과 토양(土壤) 이화학적(理化學的 ) 특성(特性)에 미치는 영향(影響))

  • Bum, In-Sook;Kim, Yong-Woong;Kim, Kwang-Sik;Kim, Kil-Yong;Sohn, Bo-Kyoon;Kim, Hyun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.171-181
    • /
    • 1999
  • A field experiments was carried out to investigate the physicochemical properties of soil and cucumber growth in vinyl house when irrigation point was made at 0.2, 1/3, 0.5 and 1.0 bar. The obtained results was summarized as follow: The taxonomic class of the soil used was loam and each content of the required water was 4.4, 7.3, 9.6 and 13.4 mm per each irrigation time at 0.2, 1/3, 0.5 and 1.0 bar treatments in spring culture, respectively. At 0.2 bar and 1.0 bar treatments, interval of irrigation was 2.3 and 14.8 day, the times of irrigation was 37 and 6, and total irrigation volume was 163.5 and 80.3 mm, respectively. After cucumber culture, pH, EC concentration and exchangeable K content of soil at 0.2 bar treatment was distributed near to the level of improvement target while EC, available $P_2O_5$ and exchangeable base content in other treatments were higher compared to improvement target. At 1.0 bar treatment, ratios of the solid and liquid phase were 44.9 and 27.1%, respectively, and bulk density was $1.26g\;cm^{-3}$ which was the highest among the treatments. At 0.2 bar treatment, the ratio of the solid and liquid phase was 41.7 and 22.8%, respectively, and bulk density was $1.09g\;cm^{-3}$ which was the lowest. The root length and radius at 0.2 bar treatment were best, while those at 1/3 bar were worst. At 0.2 bar treatment, the total yield was 7,269 kg and the weight of good products was 5,677 kg which was the highest among treatments. At 0.33 bar treatment, the yield was the lowest with the high ratio of deformity.

  • PDF