• Title/Summary/Keyword: P-P bonding

Search Result 891, Processing Time 0.024 seconds

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

Direct bonding of Si(100)/Si$_3$N$_4$∥Si (100) wafers using fast linear annealing method (선형열처리를 이용한 Si(100)/Si$_3$N$_4$∥Si (100) 기판쌍의 직접접합)

  • Lee, Young-Min;Song, Oh-Song;Lee, Sang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 2001
  • We prepared 10cm-diameter Si(100)/500 $\AA$-Si$_3$N$_4$/Si(100) wafer Pairs adopting 500 $\AA$ -thick Si$_3$N$_4$layer as insulating layer between single crystal Si wafers. Si3N, is superior to conventional SiO$_2$ in insulating. We premated a p-type(100) Si wafer and 500 $\AA$ -thick LPCVD Si$_3$N$_4$∥Si (100) wafer in a class 100 clean room. The cremated wafers are separated in two groups. One group is treated to have hydrophobic surface and the other to have hydrophilic. We employed a FLA(fast linear annealing) bonder to enhance the bond strength of cremated wafers at the scan velocity of 0.1mm/sec with varying the heat input at the range of 400~1125W. We measured bonded area using a infrared camera and bonding strength by the razor blade crack opening method. We used high resolution transmission electron microscopy(HRTEM) to probe cross sectional view of bonded wafers. The bonded area of two groups was about 75%. The bonding strength of samples which have hydrophobic surface increased with heat input up to 1577mJ/$m^2$ However, bonding strength of samples which have hydrophilic surface was above 2000mJ/$m^2$regardless of heat input. The HRTEM results showed that the hydrophilic samples have about 25 $\AA$ -thick SiO layer between Si and Si$_3$N$_4$/Si and that maybe lead to increase of bonding strength.

  • PDF

THE EFFECTS OF NANO-SIZED HYDROXYAPATITE ON DEMINERALIZATION RESISTANCE AND BONDING STRENGTH IN LIGHT-CURED GLASS IONOMER DENTAL CEMENT (광중합형 글라스아이오노머 시멘트의 탈회 저항성과 결합 강도에 대한 나노미터 입자의 하이드록시아파타이트의 효과)

  • Kim, Ji-Hee;Lee, Yong-Keun;Kim, Seong-Oh;Song, Je-Seon;Choi, Byung-Jai;Choi, Hyung-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.24-34
    • /
    • 2010
  • The aim of this study was to evaluate the effect of incorporated nano HA on the demineralization resistance and bonding strength of LC GIC in comparison with micro HA. Fuji II LC GIC was used as the control group and a base material for experimental groups. Two experimental groups were prepared. One was prepared by adding 15% micro HA to LC GIC by weight ratio (Exp. 1), and the other was prepared by adding 15% nano HA instead (Exp. 2). According to the results, the following conclusions could be obtained. 1. Observing under the CLSM, the control group showed thicker enamel demineralization layer than in the experimental groups, and the Exp. 2 group showed the thinnest demineralization layer. 2. In SEM analysis, there was greater enamel demineralization in the control group. The Exp. 2 group was more resistant to demineralization compared to the Exp. 1 group. 3. The bonding strength was found to be in the increasing order of control, Exp. 1, and Exp. 2 group (p < 0.05). 4. Observing the fractured surfaces under SEM after the bonding strength test was performed, there were bone-like apatite particles formed in HA-added experimental groups, and a greater number of bone-like apatite particles were formed in the Exp. 2 group compared to the Exp. 1 group.

WEAR AND CHEMICAL DEGRADATION OF ESTHETIC RESTORATIVE MATERIALS (심미수복 재료의 마모와 화학적 분해)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Hun-Ju;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.190-201
    • /
    • 2004
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four esthetic restorative materials in an alkaline solution. The brands studied were Charmfil, Charmfil flow(composite resin), Compoglass F and PrimaFlow(compomer). The results were as follows: 1. The mass loss were not significantly different among the materials(p>0.05). 2. The sequence of the degree of degradation layer depth was in descending order by Compoglass F, PrimaFlow, Charmfil, and Charmfil flow. There were significant differences between Compoglass F and the others(p<0.05). 3. The sequence of the Si loss was in descending order by Charmfil flow, Charmfil, PrimaFlow, and Compoglass F. There were significant differences among these materials(p<0.05). 4. When observed with SEM, destruction of bonding between matrix and filler was observed and when observed with CLSM, the depth of degradation layer of specimen surface was observed. 5. The sequence of maximum wear depth was in descending order by Comfoglass, PrimaFlow Charmal, and Charmfil flow. There were significant differences among these materials(p<0.05). 6. The correlation coefficient between Si loss and degradation layer depth (r=0.602, p<0.05) Vicker's hardness number and maximum wear depth (r=0.501, p<0.05) were relatively high. These results indicate that wear and hydrolytic degradation may be considered to be evaluation factors of composite resins and compomers.

  • PDF

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

EFFECTS OF ACID TREATMENT OF FLUORIDE APPLIED DENTIN SURFACE ON DENTIN BONDING (불소도포한 상아질면의 산처리가 상아질접착에 미치는 영향)

  • Hwang, Hea-Kyung;Ahn, Sik-Hwan;Kim, Sung-Kyo;Jo, Kwang-Hun;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.602-618
    • /
    • 1996
  • The purpose of this study was to investigate the effect of acid treatment of fluoride applied dentin surface with various concentrations of phosphoric acid for various periods of time on dentin bonding. Dentin specimens prepared from freshly extracted bovine mandibular anterior teeth were divided into fluoridated and nonfluoridated groups. Specimens of nonfluoridated group were pretreated with 10% phosphoric acid for 15 seconds. Those of fluoridated groups were treated with 2% sodium fluoride or 2% stannous fluoride solution for 5 minutes and stored in $37^{\circ}C$ distilled water for 3 days, followed by phosphoric acid treatment. The concentrations of phosphoric acid were 10%, 32% or 50% and the treatment periods of time were 15, 30 or 60 seconds. All the specimens were bonded with All Bond$^{(R)}$ 2 and Bisfil$^{TM}$ composite resin. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strengths of each specimens were measured and the pretreated dentin and the fractured dentin surfaces were examined under the scanning electron microscope. The results were as follows : The tensile bond strengths from the fluoridated groups were significantly lower than those from the nonfluoridated group when the concentrations of phosphoric acid and the treatment periods of time were equal in all the groups (p<0.05). In general, the higher the concentration of phosphoric acid and the longer the treatment period of time for acid etching on the fluoride applied dentin surface, the higher were the bond strength values. Recovery of bond strength of the dentin bonding agent was better in the NaF applied group than in the $SnF_2$ applied one. SEM findings of NaF applied and $SnF_2$ applied dentin surfaces demonstrated reaction product-covered and partially or completely obstructed dentinal tubules. SEM findings of dentin surfaces fluoridated for 5 minutes followed by etching showed wider tubular openings and more clean dentin surfaces when dentin was etched with higher concentration of phosphoric acid for longer period of time. On the SEM observations of the fractured dentin-resin interface, the etched specimens of fluoridated group showed an adhesive failure mode when the concentration of phosphoric acid and the treatment period of time were same as in the nonfluoridated group. As the concentration of phosphoric acid and the treatment period of time increase during acid etching, the cohesive failure area increased. However, excessive acid etching caused adhesive failure.

  • PDF

The Atomic-Scale Investigation of Friction at Hydrocarbon Interfaces via Molecular Dynamics Simulations ASIATRIB 2002

  • Harrison, J.A.;Gao, G;Chateauneuf, G.M.;Mikulski, P.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.59-60
    • /
    • 2002
  • In this digest, we briefly review our current molecular dynamics (MD) simulations that utilize both the reactive empirical bond order potential (REBO) and the adaptive intermolecular REBO (AIREBO) potential energy functions. The AIREBO potential includes intermolecular interactions, so that self·assembled monolayers, and liquids, can be modeled. We have examined the mechanical and tribological properties of model self assembled monolayers and amorphous carbon films. Self-assembled monolayers are modeled by covalently bonding hydrocarbon chains to diamond substrates. Because the REBO potentials can model chemical reactions, specific compression and sliding induced chemical reactions were identified.

  • PDF

CMOS Low Noise Amplifier Design for IMT-2000 (IMT-2000용 CMOS 저잡음증폭기 설계)

  • 김신철;이상국
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.333-336
    • /
    • 2000
  • This paper describes a CMOS low noise amplifier (LNA) with bias current reusing architecture intended lot use in the front-end of IMT-2000 receiver. It has been implemented in a 0.35$\mu\textrm{m}$ CMOS process with two poly and four metal layers. In order to accuracy of simulation, we considered a bonding wire and a pad effect and used the measurements of capacitors and on-chip inductors which implemented in the same process. The LNA has a forward gain (S21) of 17 ㏈ and a noise fjgure of 1.26 ㏈. And it has a third-order intermodulation intercept point (IP3) of +3.15 ㏈m and a 1㏈ compression point (P1㏈) of -16 ㏈m, input referred, respectively. The power consumption is 19 ㎽ from a 3V supply.

  • PDF

Relative Parameter Contributions for Encapsulating Silica-Gold Nanoshells by Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels

  • Park, Min-Yim;Lim, Se-Ra;Lee, Sang-Wha;Park, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.307-312
    • /
    • 2009
  • Core-shell hydrogel nanocomposite was fabricated by encapsulating a silica-gold nanoshell (SGNS) with poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) copolymer. The oleylamine-functionalized SONS was used as a nanotemplate for the shell-layer growth of hydrogel copolymer. APS (ammonium persulfate) was used as a polymerization initiator to produce a hydrogel-encapsulated SGNS (H-SGNS). The amounts of NIPAM (N-isopropylacrylamide) monomers were optimized to reproduce the hydrogel-encapsulated SGNS. The shell-layer thickness was increased with the increase of polymerization time and no further increase in the shell-layer thickness was clearly observed over 16 h. H-SGNS exhibited the systematic changes of particle size corresponding to the variation of pH and temperature, which was originated from hydrogen-bonding interaction between PNIPAM amide groups and water, as well as electrostatic forces attributed by the ionization of carboxylic groups in acrylic acid.

Heavy Carbon Incorporation into High-Index GaAs (고농도로 탄소 도핑된 높은 밀러 지수 GaAs)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.717-720
    • /
    • 2003
  • Heavily $p^{ +}$-typed ($10^{20}$ $cm^{-3}$ ) GaAs epilayers have been grown on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A by a low-pressure metalorganic chemical vapor deposition. Carbon (C) tetrabromide (CBr$_4$) was used as a C source. At moderate growth temperatures and high V/III ratios, the hole concentration of C-doped GaAs epilayers shows the crystallographic orientation dependence. The bonding strength of As sites on a growing surface plays an important role in the C incorporation into the high-index GaAs substrates.