• Title/Summary/Keyword: P-NiO

Search Result 504, Processing Time 0.029 seconds

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate (4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과)

  • Soo-Young Moon;Min-Yeong Kim;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma Source and RF Power (Plasma source와 RF power에 따른 NiO박막의 우선배향성 및 표면형상)

  • Hyunwook Ryu;Park, Jinseong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.121-121
    • /
    • 2003
  • NiO thin films are very attractive for use as an antiferromagnetic layer, p-type transparent conducting films, in electrochromic devices and functional sensor layer for chemical sensors, due to their excellent chemical stability, as well as optical, electrical and magnetic properties. In addition, (100)- and (111)-oriented NiO films can be used as buffer layers on which to deposit other oriented oxide films, such as c-axis-oriented perovskite-type ferromagnetic films and superconducting films, because of the similarity in symmetry of oxygen ion lattice and lattice constants between the NiO films and the oriented oxide films. Thus, controlling the crystallographic orientation and surface roughness of the NiO films for a buffer layer are very important.

  • PDF

The Effect of Residual Stress on Magnetoresistance in GMR Head Multilayers (자기기록 MR 헤드 용 다층박막의 자기저항에 미치는 잔류응력 효과)

  • Hwang, Do-Guwn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.322-327
    • /
    • 2003
  • Giant magnetoresistance(GMR) NiO multilayer, which has been used to reading head of highly dense magnetic recording, was fabricated, and oxidized in an air during 80 days to study the dependence of magnetoresistance properties on residual stress in the interfaces. The magnetoresistance ratio and the exchange biasing $field(H_{ex})$ of $NiO(60nm)/Ni_{81}Fe_{19}(5nm)/Co(0.7nm)/Cu(2nm)/Co(0.7nm)/Ni_{81}Fe_{19}(7nm)$ spin valves were increased from 4.9% to 7.3%, and 110 Oe to 170 Oe after natural oxidation in the atmosphere for 80 days, respectively. The sheet resistivity ${\rho}$ decreased from $28{\mu}{\Omega}m$ to $17{\mu}{\Omega}m$, but ${\Delta}p$ did not almost change after the oxidation. Therefore, the increase of MR ratio is due to the decrease in the sheet resistivity. the reduced resistance may result from the increase in the reflection of conduction electrons at the oxidized top surface. Also, the increase in the exchange biasing field is originated from the reduction of residual stress at the interface of $NiO/Ni_{81}Fe_{19}$ according as the aging time increases.

Synthesis or photocatalytic Ni-doped nanocomposite $TiO_2$ by mechanical alloying and heat treatment (기계적 합금화법과 열처리를 통한 Ni이 도핑 된 광촉매 $TiO_2$ 나노 복합상 제조)

  • Park, Ha-Sung;Kim, Dong-Hyun;Jho, Jae-Han;Kim, Sun-Jae;Lee, Kyung-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.667-672
    • /
    • 2005
  • In order to effectively utilize visible light in the photocatalytic reaction, nanaocomposite of Ni doped $TiO_2$ and $NiTiO_3$ powders were synthesized by mechanical alloying and heat treatment. About 5.4 wt% of $NiTiO_3$ with particle size less than 15nm was uniformly formed in the Ni-doped rutile $TiO_2$ matrix. The UV/VIS-DRS and PL investigation showed that the nanocompasite $TiO_2$ powders had a longer absorpt ion wavelength (600$\sim$650nm, 2.0$\sim$1.9eV) than that of Ni-doped $TiO_2$ or rutile $TiO_2$ powder. The carbon decomposition of 4-CP by the nanocompasite $TiO_2$ powders were higher than other $TiO_2$ (P-25).

  • PDF

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites (화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성)

  • 박수진;장유신;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2001
  • The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

  • PDF

Investigation of Electronic Structures of TCr2O4 (T = Fe, Co, Ni) Spinel Oxides by Employing Soft X ray Synchrotron Radiation Spectroscopy (연 X선 방사광 분광법을 이용한 TCr2O4(T = Fe, Co, Ni) 스피넬 산화물의 전자구조 연구)

  • Kim, Hyun Woo;Hwang, Jihoon;Kim, D.H.;Lee, Eunsook;Kang, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.149-153
    • /
    • 2013
  • The electronic structures of $TCr_2O_4$ (T = Fe, Co, Ni) spinel oxides have been investigated by employing synchrotron radiation-based soft X ray absorption spectroscopy (XAS). The measured 2p XAS spectra of transition-metal ions reveal that Cr ions are trivalent ($Cr^{3+}$), and all the T (T = Fe, Co, Ni) ions are divalent ($Fe^{2+}$, $Co^{2+}$, $Ni^{2+}$). It is also found that most of T (T = Fe, Co, Ni) ions occupy the A sites under the tetrahedral symmetry, while Cr ions occupy mainly the B sites under the octahedral symmetry. These findings show that the structures of $TCr_2O_4$ (T = Fe, Co, Ni) are very close to the normal spinel structures. Based on these findings, it is expected that Jahn-Teller (JT) effects are important in $FeCr_2O_4$ and $NiCr_2O_4$. In contrast, $CoCr_2O_4$ maintains the cubic structure without having the JT distortion since both $Cr^{3+}$ and $Co^{2+}$ ions are non-JT ions. This work suggests that the antiferromagnetic interaction between $Cr^{3+}$ and $T^{2+}$ ions plays an important role in determining the magnetic properties of $TCr_2O_4$ (T = Fe, Co, Ni).

Effects of crystallization reagent and pH on the sulfide crystallization of Cu and Ni in fluidized bed reactor (유동층 반응기를 이용한 구리와 니켈의 황화물 결정화에 결정화 시약 및 pH가 미치는 영향)

  • Jeong, Eunhoo;Shim, Soojin;Yun, Seong Taek;Hong, Seok Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2014
  • Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and $Na_2S{\cdot}9H_2O$ were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and $Na_2S{\cdot}9H_2O$ reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in $Na_2S{\cdot}9H_2O$ compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with $Na_2S{\cdot}9H_2O$. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.