• Title/Summary/Keyword: P-파속도

Search Result 191, Processing Time 0.024 seconds

Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test (동결융해시험에 의한 사암 및 안산암의 풍화특성 평가)

  • Kang, Seong-Seong;Kim, Jong-In;Obara, Yuzo;Hirata, Atsuo
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Variations of physical properties such as weight loss rate, wave velocity and uniaxial compressive strength after performing freeze-thaw cyclic test were measured in order to define weathering characteristics of sandstone and andesite. Weight change in specimens of the two rocks decreased with increasing the repetition number of freeze-thaw cyclic test. In particular, weight loss of andesite specimens was very irregular. P-wave velocity of sandstone specimens decreased more than 5%. On the other hand, P-wave velocity of andesite specimens do not vary up to 500 cycles and decreased more than 5% after 1000 cycles. This implies that the sandstone are easily weakened and loosened by weathering processes, while the andesite are relatively strong. In addition, the wave velocity changes of the andesite specimens coincident with the weight change. Uniaxial compressive strengths of the sandstone specimens slightly decreased at the early stage of the freezing-thawing cyclic test, then tended to be irregular after 64 cycles. In conclusion, the rock specimens showed smaller weight loss, less had lower strength reduction rate.

Analysis of Weathered State on a Halo Stone Buddha, Unju Temple of Hwasun, Korea Using Low Frequency Flaw Detector (저주파 결함 탐지기를 활용한 화순 운주사 광배석불의 풍화상태 분석)

  • Kang, Seong-Seung;Ko, Chin-Surk;Kim, Cheong-Bin;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.235-246
    • /
    • 2013
  • P-wave velocity was measured by the low frequency flaw detector in order to analyze the weathered state of a halo stone Buddha, Unju temple, Hwasun, Korea. By the results of laboratory tests on a fresh acidic tuff with the same rock of a halo stone Buddha, average absorption, average P-wave velocity, and average uniaxial compressive strength were 5.38%, 4,008 m/s, and 70.1 MPa, respectively. The results correspond to moderately strong rock. Average P-wave velocity of a halo stone Buddha measured by the low frequency flaw detector was 2,257 m/s in the left zone, 3,437 m/s in the right zone, and 2,802 m/s overall. Weathering index of a halo stone Buddha was 0.45 in the left zone, 0.21 in the right zone, and 0.33 overall. Comparing the results of a halo stone Buddha with them of laboratory tests, weathered state of a halo stone Buddha was analyzed highly weathered state in the left zone and moderately weathered state in the right zone. Furthermore, it suggests that the left zone of a halo stone Buddha was affected weathering more than the right one. Overall a halo stone Buddha corresponds to moderately weathered state of weathering degrees. In conclusion, it is considered that low frequency flaw detector may be applicable as a valuable method on analyzing the P-wave velocity of the stone cultural heritage with an irregular surface.

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Evaluating Shear Wave Velocity of Rock Specimen Through Compressional Wave Velocities Obtained from FFRC and Ultrasonic Velocity Methods (양단자유공진주 및 초음파속도법으로 획득한 압축파 속도를 이용한 암석시편의 전단파 속도 도출)

  • Bang, Eun Seok;Park, Sam Gyu;Kim, Dong Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.250-256
    • /
    • 2013
  • Using shear wave velocity is more reasonable to estimate strength and integrity of rock compared with using compressional wave. It is often ambiguous to pick the dominant frequency caused by torsional wave when evaluating $V_S$ of rock specimen from FFRC method. It is also sometimes ambiguous to pick the first arrival point of S wave compared with P wave in the signals acquired from ultrasonic velocity method. Otherwise, the procedure of evaluating $V_P$ using ultrasonic velocity method and $V_L$ using FFRC method is relatively stable. Through the relationship between elastic modulus, poisson's ratio and $V_S$ can be obtained from $V_P$, $V_L$. Applicability was checked using model specimens having different material property and length and rock specimens sampled in mine area, and usefulness of proposed procedure was verified.

Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration (바이모달 분포형태 랜덤 불균질 매질에 의한 메탄하이드레이트층 모델화)

  • Kamei Rie;Hato Masami;Matsuoka Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • We have developed a random heterogeneous velocity model with bimodal distribution in methane hydrate-bearing Bones. The P-wave well-log data have a von Karman type autocorrelation function and non-Gaussian distribution. The velocity histogram has two peaks separated by several hundred metres per second. A random heterogeneous medium with bimodal distribution is generated by mapping of a medium with a Gaussian probability distribution, yielded by the normal spectral-based generation method. By using an ellipsoidal autocorrelation function, the random medium also incorporates anisotropy of autocorrelation lengths. A simulated P-wave velocity log reproduces well the features of the field data. This model is applied to two simulations of elastic wane propagation. Synthetic reflection sections with source signals in two different frequency bands imply that the velocity fluctuation of the random model with bimodal distribution causes the frequency dependence of the Bottom Simulating Reflector (BSR) by affecting wave field scattering. A synthetic cross-well section suggests that the strong attenuation observed in field data might be caused by the extrinsic attenuation in scattering. We conclude that random heterogeneity with bimodal distribution is a key issue in modelling hydrate-bearing Bones, and that it can explain the frequency dependence and scattering observed in seismic sections in such areas.

Influence of Moisture Content on Longitudinal Wave Velocity in Concrete (수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구)

  • Lee, H.K.;Lee, K.M.;Kim, J.S.;Kim, D.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.259-269
    • /
    • 1999
  • Elastic wave velocity measurement technique such as impact-echo method and ultrasonic pulse velocity method has been successfully used to evaluate the moduli and strength of concrete. However, estimation results obtained by the NDT methods do not agree well with real things because longitudinal wave velocity is influenced by various factors. In this paper, among several factors influencing P-wave velocity, the influence of moisture content in concrete was investigated through the experiment. Test results show that longitudinal wave velocity is significantly affected by the moisture content of concrete, i.e., the lower moisture content. the lower velocity. Moisture content influences rod-wave velocity measured by impact-echo method stronger than ultrasonic pulse velocity measured by transmission method. During drying process with ages. the difference of increasing rate between longitudinal wave velocity and compressive strength of concrete is gradually increased. Therefore, to establish more accurate relationship between longitudinal wave velocity and strength, the difference of the increasing rate should be considered.

  • PDF

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

P- and S-wave seismic studies in the Ulsan fault zone near Nongso-Eup (농소읍 부근 울산단층대에서의 P파 및 S파 탄성파 조사 연구)

  • Lee, Chang-Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.95-100
    • /
    • 2006
  • To reveal subsurface structures of the Ulsan fault, seismic data were recorded along a 750-m long line near Nongso-Eup in Ulsan. P and S waves were generated simultaneously by impacting a 5 kg sledgehammer on a tilted plate. The data were received by 16 10-Hz 3-component geophones at 3 m intervals. Refracted P waves were inverted using the tomography method. Dip moveout and migration were applied to reflection data processed following a general sequence. Four layers were identified based on P-wave velocities and P- and S-wave stacked image. From top to bottom, the P-wave velocity of each layer ranges in $300{\sim}1100\;m/s$, $1100{\sim}1700\;m/s$, $1700{\sim}2700\;m/s$, and greater than 2700 m/s. The corresponding thickness of the top three layers averages 3.9 m, 5.9 m, 4.4 m, respectively. The S-wave stack section is effective to define subsurface structures shallower than 10 m.

  • PDF

Synthetic Seismograms of Non-geometric S* and P* Waves Using the Reflectivity Method (반사도 기법에 의한 비기하적 S* 및 P* 파의 합성 계산)

  • Hong, Dong Hee;Baag, Chang Eob
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.393-409
    • /
    • 1990
  • Synthetic seismograms and deduced characteristic properties of the non-geometrical $S^*$ and $P^*$ waves are presented. These waves are excited on the free surface or an interface between two different media by an inhomogeneous P wave from a point source nearby, and propagate as homogeneous waves in the media. Synthetic seismograms are computed using an extended reflectivity method designed for buried source and receiver. An efficient computational procedure for propagator matrices of layers is devised to reduce the computational time and the RAM memory size in the implementation of the reflectivity method. Radiation patterns are obtained from the particle motions of the four types of the "*" waves, i.e., the $S^*$ wave generated near the free surface, and the reflected $S^*$, transmitted $S^*$ and transmitted $P^*$ waves generated near an interface. Some patterns show polarity changes of displacements and others reveal monotonic or non-monotonic variation of amplitude depending on the velocity structure. The decaying trend of amplitude with increasing epicentral distance are also shown for the head wave type of the "*" waves.

  • PDF