• Title/Summary/Keyword: P uptake

Search Result 1,567, Processing Time 0.024 seconds

Nitrate Uptake in the Halotolerant Cyanobacterium Aphanothece halophytica is energy-dependent driven by ΔpH

  • Incharoensakdi, Aran;Laloknam, Surasak
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.468-473
    • /
    • 2005
  • The energetics of nitrate uptake by intact cells of the halotolerant cyanobacterium Aphanothece halophytica were investigated. Nitrate uptake was inhibited by various protonophores suggesting the coupling of nitrate uptake to the proton motive force. An artificially-generated pH gradient across the membrane (${\Delta}pH$) caused an increase of nitrate uptake. In contrast, the suppression of ${\Delta}pH$ resulted in a decrease of nitrate uptake. The increase of external pH also resulted in an enhancement of nitrate uptake. The generation of the electrical potential across the membrane ($\Delta\psi$) resulted in no elevation of the rate of nitrate uptake. On the other hand, the valinomycin-mediated dissipation of $\Delta\psi$ caused no depression of the rate of nitrate uptake. Thus, it is unlikely that $\Delta\psi$ participated in the energization of the uptake of nitrate. However, $Na^+$-gradient across the membrane was suggested to play a role in nitrate uptake since monensin which collapses $Na^+$-gradient strongly inhibited nitrate uptake. Exogenously added glucose and lactate stimulated nitrate uptake in the starved cells. N, N'-dicyclohexylcarbodiimide, an inhibitor of ATPase, could also inhibit nitrate uptake suggesting that ATP hydrolysis was required for nitrate uptake. All these results indicate that nitrate uptake in A. halophytica is ATP-dependent, driven by ${\Delta}pH$ and $Na^+$-gradient.

Uptake of a Dipeptide by the Dipeptide Transporter in the HT-29 Intestinal Cells (HT-29 장관세포에 있는 디펩티드수송체에 의한 디펩티드의 흡수)

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 1995
  • The peptide transporter can be utilized for improving the bioavailability of compounds that are poorly absorbed. Characterization of the dipeptide uptake into the human intestinal epithelial cells, HT-29 was investigated. The uptake of tritiated glycylsarcosine $([^3H]-Gly-Sar,\;0.1\;{\mu}Ci/ml)$ was measured in confluent or subconfluent HT-29, Caco-2, and Cos-7 cells. Uptake medium was the Dulbecco's Modified Eagle's Media (DMEM) adjusted to pH 6.0. Both HT-29 and Caco-2 cells expressed the dipeptide transporter significantly (p<0.005) but Cos-7 did not. Certain portions of passive uptake were observed in all three cell lines. Uptake of Gly-Sar was largest at 7 days after plating HT-29 cells with significant inhibition with 25 mM cold Gly-Sar (p<0.05). but expression ratio of the dipeptide transporter was 0.7, suggesting lower expression. The effect of pH on Gly-Sar uptake was not significant in the range of pH 6 to 8. Gly-Sar uptake was also inhibited with 50 mM carnosine, 25 mM Gly-Sar, and 35 mM cephalexin significantly (p<0.05). From above results the dipeptide transporter was expressed well in HT-29 cells and was similar to that in the small intestine, suggesting that large amounts of mRNA of the transporter from the cells can be obtained.

  • PDF

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Effect of pH on PAH Transport in Brush Border Basolateral Membrane Vesicles of Rabbit Proximal Tubule (가토 신장 근위세뇨관의 Brush Border 및 Basolateral Membrane Vesicle에서 PAH 이동에 미치는 pH의 영향)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 1988
  • The effect of pH on the rate of PAH uptake was studied in rabbit renal basolateral membrane vesicles (BLMV) and brush border membrane vesicles (BBMV). In the absence of Na in incubation medium, a decrease in external $pH(pH_0)$ led to an increase in probenecid-sensitive PAH uptake by BLMV. In the presence of Na, the probenecid-sensitive PAH uptake was unaltered when the $pH_0$ decreased from 8.0 to 6.0 but further decrease in $pH_0$ to 5.5 increased significantly the uptake. The probenecid-sensitive PAH uptake was not affected by an alteration in pH per se in the absence of a pH gradient with or without the presence of Na. However, the presence of Na stimulated the probenecid-sensitive PAH uptake in all pH ranges tested over that measured in the absence of Na. A similar pattern of pH dependence on the PAH uptake was observed in BBMV but the presence of Na did not alter the probenecid-sensitive PAH uptake in the presence and absence of a pH gradient. Kinetic analysis for BLMV showed that Na or pH gradient increased Vmax of the probenecid-sensitive PAH uptake without a change in Km value. These results suggest that PAH is transported by $OH^-/PAH$ exchange process in the luminal membrane, but the pH dependence in the BLMV is not unequivocally consistent with an anion exchange process. The PAH transport is dependent on Na in BLMV but not in BBMV.

  • PDF

Analysis of Polyamine Transport of Young Spring Radish Cotyledons (무우의 유자엽에서 Polyamine의 수송 분석)

  • Cho, Bong-Heuy
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.130-134
    • /
    • 1998
  • Polyamines were analyzed in young cotyledons of spring radish. The uptake rate of SPD were transported within 20 min lineary and reached the saturation phase after 1hr. The uptake rate of SPD decreased gradually with the time by the increasing amount of SPD inside the cells. The uptake of PA depends on the external pH. The optimal pH of PA uptake are pH 7.5. $K_m-$ and $V_{max}-$values depend on external pH also. The uptake rate of PA was inhibited by external KCI, which depolarized membrane potential in the cells.

  • PDF

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

P RELEASE AND UPTAKE ACCORDING TO INFLUENT ORGANIC LOADING IN BNR PROCESS

  • Kim, Kwang-Soo;Ahn, Chang-Hoon;Park, Jae-Kwang
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.265-268
    • /
    • 2005
  • A batch-type study was conducted to investigate the phosphorus release and uptake under anaerobic and aerobic conditions according to organic loading changes. As organic loading increased, anaerobic P release increased but aerobic P uptake decreased. Where organic carbon contents remain high in aerobic conditions, PHB consumption within the microbial cells diminished, therefore it was found that in order to enhance P uptake rate, it should reach the endogenous growth stage where the entire organic loading was consumed.

Evidence for Sulfite Proton Symport in Saccharomyces cerevisiae

  • Park, Hoon;Alan T. Bakalinsky
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.967-971
    • /
    • 2004
  • The kinetics of sulfite uptake were examined in a wild-type laboratory strain of Saccharomyces cerevisiae to determine if carrier-mediated sulfite uptake involved a proton symport, as previous studies on sulfite uptake have suggested both an active process and facilitated diffusion. Accumulation of intracellular sulfite was initially rapid and linear up to 50 sec. Uptake was saturable at final concentrations equal to or greater than 3 mM sulfite, and increased 2-fold in the presence of 2% glucose. Uptake was significantly reduced in cells pretreated with 100-500 $\mu$M carbonyl cyanide mchlorophenylhydrazone (CCCP) or 2,4-dinitrophenol (DNP), both of which dissipate proton gradients. Uptake was also significantly inhibited in the presence of 1 mM arsenate, an inhibitor of ATP synthesis. Extracellular alkalization was observed in cells incubated with 1-2 mM sulfite in a weak tartrate buffer at pH 3.5 and 4.5. These findings suggest that the bisulfite ion, $HSO_3^-$, an anionic form of sulfite, is taken up by a carrier-mediated proton symport. A met16 sull sul2 mutant, impaired in both sulfite formation and sulfate uptake, was found able to grow on a medium with sulfite as the sole Sulfur source, indicating that the sulfate transporters Sul1p and Sul2p are not required for sulfite uptake.

Effect of Ethanol on $Na^+-P_i$ Uptake in Opossum Kidney Cells: Role of Membrane Fluidization and Reactive Oxygen Species

  • Park, In-Ho;Hwang, Moon-Young;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.529-538
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+ -dependent$ phosphate $(Na^+-P_i)$ uptake in opossum kidney (OK) cells, an established renal proximal tubular cell line. Ethanol inhibited ^Na^+-dependent$ component of phosphate uptake in a dose-dependent manner with $I_{50}$ of 8.4%, but it did not affect $Na^+-independent$ component. Similarly, ethanol inhibited $Na^+-dependent$ uptakes of glucose and amino acids (AIB, glycine, alanine, and leucine). Microsomal $Na^+-K^+-ATPase$ activity was not significantly altered when cells were treated with 8% ethanol. Kinetic analysis showed that ethanol increased $K_m$ without a change in $V_{max}$ of $Na^+-P_i$ uptake. Inhibitory effect of n-alcohols on $Na^+-P_i$ uptake was dependent on the length of the hydrocarbon chain, and it resulted from the binding of one molecule of alcohol, as indicated by the Hill coefficient (n) of 0.8-1.04. Catalase significantly prevented the inhibition, but superoxide dismutase and hydroxyl radical scavengers did not alter the ethanol effect. A potent antioxidant DPPD and iron chelators did not prevent the inhibition. Pyrazole, an inhibitor of alcohol dehydrogenase, did not attenuate ethanol-induced inhibition of $Na^+-P_i$ uptake, but it prevented ethanol-induced cell death. These results suggest that ethanol may inhibit $Na^+-P_i$ uptake through a direct action on the carrier protein, although the transport system is affected by alterations in the lipid environment of the membrane.

  • PDF

Cadmium Uptake by Mon-viable Biomass from a Marine Brown Alga Ecklonia radiata Turn.

  • Park, Eun-Kee;Lee, Sung-Eun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.221-224
    • /
    • 2002
  • Biomass of non-viable and dried brown marine algae Ecklonia radiata Turn. was used to examine Its cadmium uptake capability. Twelve different pretreatments on the algal biomass were prepared. Among these pretreatments, the algal biomass, which treated with 0.1 M NaOH and kept in water. bath (100$\^{C}$, 18 h) followed by washing with distilled water and squeezing, showed the highest amount of cadmium uptake as 1634 $\pm$ 195 mg/g dry biomass at pH 4.0 and 50$\^{C}$. Adsorption temperatures and pH levels played some Important role In cadmium uptake. However, cadmium uptake decreased dramatically at a lower pH than 4.0. Freundlich adsorption isotherm showed potent cadmium uptake capacity of the non-viable biomass. Pretreatments on the non-viable algal biomass shown in this study nay enhance the Eadmium removal in the industrial wastewater.