• Title/Summary/Keyword: P solubility

Search Result 940, Processing Time 0.032 seconds

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

2-Hexylthieno[3,2-b]thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells

  • Jo, So-Young;Hur, Jung-A;Kim, Kyung-Hwan;Lee, Tae-Wan;Shin, Ji-Cheol;Hwang, Kyung-Seok;Chin, Byung-Doo;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3061-3070
    • /
    • 2012
  • Novel 2-hexylthieno[3,2-b]thiophene-containing conjugated molecules have been synthesized via a reduction reaction using tin chloride in an acidic medium. They exhibited good solubility in common organic solvents and good self-film and crystal-forming properties. The single-crystalline objects were fabricated by a solvent slow diffusion process and then were employed for fabricating field-effect transistors (FETs) along with thinfilm transistors (TFTs). TFTs made of 5 and 6 exhibited carrier mobility as high as 0.10-0.15 $cm^2V^{-1}s^{-1}$. The single-crystal-based FET made of 6 showed 0.70 $cm^2V^{-1}s^{-1}$ which was relatively higher than that of the 5-based FET (${\mu}=0.23cm^2V^{-1}s^{-1}$). In addition, we fabricated organic photovoltaic (OPV) cells with new 2-hexylthieno [3,2-b]thiophene-containing conjugated molecules and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester ($PC_{61}BM$) without thermal annealing. The ternary system for a bulk heterojunction (BHJ) OPV cell was elaborated using $PC_{61}BM$ and two p-type conjugated molecules such as 5 and 7 for modulating the molecular energy levels. As a result, the OPV cell containing 5, 7, and $PC_{61}BM$ had improved results with an open-circuit voltage of 0.90 V, a short-circuit current density of 2.83 $mA/cm^2$, and a fill factor of 0.31, offering an overall power conversion efficiency (PCE) of 0.78%, which was larger than those of the devices made of only molecule 5 (${\eta}$~0.67%) or 7 (${\eta}$~0.46%) with $PC_{61}BM$ under identical weight compositions.

Comparison of Physicochemical Properties on Waxy Black Rice and Glutinous Rice (찰흑미와 일반찰벼 쌀가루의 이화학적 성질 비교)

  • Oh, Geum-Soon;Kim, Kwan;Na, Hwan-Sik;Choi, Gyong-Choel
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • In this study, the physicochemical properties of warty black and glutinous rice flours were compared. Crude protein content of waxy black rice flour (9.01%) was higher than than of glutinous rice flour (7.54%). Most mineral contents of waxy black rice flour were higher than those of glutinous rice flour. The major fatty acids in the waxy black and glutinous rice flours were oleic acid (38.57% and 36.95%) and linoleic acid (38.60% and 39.10%). The major detected amino acids of both samples were aspartic acid, glutamic acid and arginine. Water binding capacity of waxy black rice flour (93.26%) was higher than that of glutinous rice flour (87.42%) . Swelling powers and solubilities of waxy black rice flour were lower than those of glutinous rice flour in according to increasing temperatures. Maximum absorbance wavelength (λ$_{max}$) and absorbance at 625 nm were similar between both samples. X-ray diffraction patterns of both samples showed traditional A type as Peaks 2$\theta$ at 15.1$^{\circ}$, 17.1$^{\circ}$, 18.0$^{\circ}$and 23.2$^{\circ}$. The relative crystallinities of waxy black and glutinous rice flours were 0.40 and 0.41, respectively.

Quality Characteristics and Antioxidant Activity of Chrysanthemum indicum L., Chrysanthemum boreale M. and Chrysanthemum zawadskii K. Powdered Teas (감국, 산국 및 구절초꽃 분말 차의 항산화활성과 품질특성)

  • Lee, Sang-Hoon;Hwang, In-Guk;Nho, Jin-Woo;Chang, Young-Deug;Lee, Chul-Hee;Woo, Koan-Sik;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • In order to investigate the quality characteristics of powdered teas using Compositae species flower, the samples of Chrysanthemum indicum L. (CI), Chrysanthemum boreale Makino (CB), and Chrysanthemum zawadskii var. latilobum (Maxim.) Kitam (CZ) were extracted with hot water and concentrated, and then mixed with different forming agents of dextrin (D) and maltodextrin (MD). The mixing ratio of D and MD was ranged from 9:1 (DMD91) to 8:2 (DMD82) or D and MD only. The solubility of the powdered tea was higher in added dextrin. The highest total polyphenol and flavonoid content of the powdered tea were 6.75 and 3.24 mg/g at CBDMD91, respectively. Total antioxidant activities of C. indicum, C. boreale, and C. zawadskii powdered tea ranged at $2.51{\sim}2.63$, $4.37{\sim}4.50$, and $3.44{\sim}3.55\;mg$ AA eq/g, respectively. In sensory evaluation, the C. indicum and C. zawadskii powdered teas obtained higher sensory score of all evaluation items than C. boreale powdered tea. The optimal mixing ratio at 36% of D and 4% of MD in forming agent was selected to enhance the sensory characteristics and antioxidant activities of powdered tea.

Effects of a Carbohydrase Mixture, Ultrasound, and Irradiation Treatments on the Physical Properties of Defatted Mustard Meal-based Edible Films (탈지 겨자씨로 제조한 가식성 생고분자 필름의 물리적 특성에 대한 탄수화물 가수분해 효소 혼합체, 초음파, 그리고 방사선 처리의 효과)

  • Yang, Hee-Jae;Noh, Bong-Soo;Kim, Jae-Hun;Min, Sea-C.
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Effects of depolymerization treatments of a carbohydrase mixture (CM), ultrasound, and irradiation on the physical properties of defatted mustard meal-based edible films (DMM films) were investigated. DMM hydrocolloids were added to CM (0.42% (w/w solution)), treated by ultrasound (500-700 W, 10-30 min) or ${\gamma}$-ray (40-100 kGy) to prepare film-forming solutions. Films were formed by drying. The CM treatment at 0.42% (w/w), pH 5.5, and 40-$50^{\circ}C$ with a 0.5 hr incubation time resulted in the highest colloidal stability in the film-forming solution. The depolymerization treatments did not dramatically change the water vapor permeability of the films. The solubility of the film decreased up to 53.1% by the CM treatment. The ultrasound treatment (700 W-30 min) decreased tensile strength and elongation. The ultrasound treatment (600 W-20 min) resulted in more compact and uniform structures of the films. Flavor profiles were differentiated by the power level and the time of the ultrasound treatment.

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Evaluation of the Safty for the Disposal of High-level Nuclear Waste in the Granite (화강암지역에 고준위 원자력 폐기물 처리에 대한 안정성 평가)

  • Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.215-225
    • /
    • 1996
  • All the radionuclides in high-level nuclear waste will decay to harmless levels eventually but for some radionuclides decay is so slow that their radiation remains dangerous for times on the order of tens or hundreds of thousands of years. At the present time, the most favorite disposal plan for high-level radioactive waste is a mined geological disposal in which canister enclosing stable solid form of radioactive waste is placed in mined cavities locating hundred meters below the surface. The chief hazard in such disposal is dissolution of radionuclides from the waste in the groundwater that will eventually carry the dissolved radionuclides to surface environments. The hazard from possible escape of the radionuclides through groundwater can be delayed by engineered and geologic barriers. The engineered barriers can become useless by unexpected geologic catastrophe such as volcanism, earthquake, and tectonic movement and by fraudulent work such as careless construction, improperly welded canisters within the first few decades or centuries. As a result, dangerously radioactive waste which is still intensively radioactive is directly exposed to attack by moving groundwater. All the more, it is almost impossible to control repositories for times more than 10,000 years. Therefore, naturally controlled geologic, barriers whose properties will not be changed within 10,000 years are important to guarantee the safety of repositories of high-level radioactive waste. In Sweden and France, the suitability of granite for the mined geological disposal of high-level waste has been studied intensively. According to the research in Sweden and France, granites has the following physio-chemical characteristics which can delay the transportation of radionuclide by groundwater. First, the permeabilities of granites decreases as the depth increases and is $10^{-8}{\sim}10^{-12}m/s$ at depth below 300 m. Second, groundwater at depth below 300 m has pH=7-9 and reducing condition (Eh=-0.1~0.4). This geochemical condition is desirable to prevent both canister and solid waste from corrosion. Third most radionuclides are not transported by low solubilities and some radionuclide with high solubility such as Cs and Sr are retarded by absorption of geologic media through which ground water flows. Therefore, if high-level waste is disposed at depth below 300 m in the granite body which has a low permeability and is geologically stable more than 10,000 years, the safety of repositories from the hazard due to radionuclide escape can guaranteed for more than 10,000 years.

  • PDF

Evaluation of Novel Constitutive Expression Vectors Equipped with Mined Promoters from Metagenome (메타게놈에서 발굴한 프로모터를 장착한 새로운 항시발현 벡터의 가치평가)

  • Han, Sang-Soo;Kim, Geun-Joong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.260-267
    • /
    • 2008
  • The choice of expression vector is very important for industrial production of proteins. Therefore, the systematic mining of promoters over a wider range of genetic resource and/or host is required. We previously reported a novel bidirectional reporting system (pBGR) for the isolation of promoters from metagenome and screened useful promoters that functioned constitutively in E. coli under general culture conditions. Among them, three promoter sequences including each upstream region were amplified by PCR and used to construct new expression vectors. To facilitate subcloning, a multi-cloning site was incorporated into the downstream region of the revere primer sequence. At these sites, GFP, esterase and $\beta$-glucosidase were subcloned and analyzed the constitutive expression ability of new promoter in terms of protein solubility and expression level. As a result, these vectors expressed the proteins constitutively to a level of $2{\sim}3%$ of the total cell protein in soluble fraction (>80 %). This study suggested that excavation of metagenomic promoters for construction of expression vector in a certain strain could provide a way for the development of the expression systems.

Development of Self-microemulsifying Drug Delivery System for Enhancing the Bioavailability of Atorvastatin

  • Jin, Shun-Ji;Cho, Won-Kyung;Park, Hee-Jun;Cha, Kwang-Ho;Park, Jun-Sung;Koo, Ja-Seong;Wang, Hun-Sik;Kim, Jeong-Soo;Kim, Min-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The objective of the study was to prepare self-microeulsifying drug delivery system (SMEDDS) incorporating atorvastatin calcium and evaluate its properties and oral bioavailability. Solubility of atorvastatin in various vehicles was determined. Pseudo-ternary phase diagrams were constructed to identify the good self-emulsification region. The droplet size distributions of the resultant emulsions were determined by dynamic light scattering measurement. The mean droplet size of chosen formulation (20% ethyl oleate, 40% tween-80, 40% Carbitol$^{(R)}$) was $23.4{\pm}1.3$ nm. The SMEDDS incorporating atorvastatin calcium appeared to be associated with better performance in dissolution and pharmacokinetic studies, compared with raw atorvastatin calcium. In dissolution test, the release percentage of atorvastatin from SMEDDS mixture could rapidly reach more than 95% within 3 min. Oral $AUC_{0{\rightarrow}8hr}$ values in SD rats was $1994{\pm}335\;ng{\cdot}hr/mL$, which significantly increased (P<0.05) compared with raw atorvastatin calcium. The SMEDDS formulation was relatively stable when stored at $4^{\circ}C$ during 3 months. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as atorvastatin, by the oral route.

Physicochemical Properties of Modified Chufa (Cyperus esculentus L., var sativus Boeck) Starch (기름골 변성전분의 물리화학적 특성)

  • Han Sang-Ha;Lee Hyun-Yu;Kum Jun-Seok;Park Jong-Dae
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.404-412
    • /
    • 2006
  • TThe purpose of this study was to investigate the physicochemical properties of chufa(Cyperus esculentus L., var sativus Boeck) starches by physical and chemical modification. Chufa starches were exposed to the microwave with 700W power oven for 1, 2, and 3 minutes. Also, starch was oxidized with 1.5%, 3% and 6% (15, 30, 60 mg Cl2/g starch $40^{\circ}\C$, pH 10, 3.0 hr) sodium hypochlorite. The shape of starch granules was not changed much by microwave heating and sodium hypochlorite. Water binding capacity increased but amylose content swelling power, and solubility decreased with increasing microwave heating time. Water binding capacity of the oxidized starch decreased with increasing the content of sodium hypochlorite. With increasing the microwave heating time, gelatinization temperature decreased, but enthalpy(${\Delta}H$) increased in physical modification of chufa starches. Also, chemically modified chufa starches have the similar pattern in gelatinization properties. Peak viscosities of RVA in physically modified chufa starches were 416-188 RVU, and in chemically modified chufa starches they were 129-267 RVU.