• Title/Summary/Keyword: P solubility

Search Result 940, Processing Time 0.031 seconds

Nutritional Value of Soybean Meal from Various Geographic Origin and Effect of Their Dietary Supplementation on Performance of Broilers (원산지가 다른 대두박의 영양적 가치평가와 육계의 생산성에 미치는 영향)

  • Lee, Bo-Keun;Kim, Jae-Young;Kim, Ji-Sook;You, Sun-Jong;An, Byoung-Ki;Kim, Eun-Jib;Kang, Chang-Won
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • This study was carried out to investigate the nutritional value of soybean meal (SBM) from various geographic origins and the effects of their dietary supplementation on performance of broiler chickens. Nutritional value of dehulled SBM originating from USA, and non-dehulled SBM from India (IND), Argentina (ARG) and Korea (KOR) were evaluated by analyzing chemical composition, urease activity (UA) and KOH solubility, and determining true metabolizable energy (TME), nitrogen corrected TME (TMEn) and true amino acid availability (TAAA). The contents of crude protein ranged from 45.43% (ARG) to 48.47% (USA) and those of crude fiber varied widely from 3.48% (USA) to 7.12% (IND). The measurements of lysine varied from 2.79% (IND) to 3.09% (USA) and those of methionine from 0.56% (IND) to 0.65% (USA). The values of TMEn varied from 2986.6 kcal/kg (IND) to 3228.9 kcal/kg (USA) and the averages of TAAA were from 91.61% (IND) to 92.27% (USA). UA was found to be from 0.02 (ARG) to 0.04 (KOR, USA) and those of KOH solubility from 73% (ARG) to 84% (USA). A total of four hundred 20-days-old male broiler chicks were divided into four groups and fed with isocaloric and isonitrogenous experimental diets containing 27.5% of SBM and same amounts of lysine and sulfur amino acids for 15 days. Final body weight and body weight gain were the highest in birds fed with SBM from USA and lowest in birds fed with SBM from IND although the differences were not statistically significant. The feed/gain in chicks fed diet containing SBM from USA was significantly improved (p<0.05) compared to those of the other groups. There were no significant differences in carcass characteristics and the concentration of total cholesterol in serum among the treatments. The results of in vitro assay and bioassay agreed with the performance of broiler chicks, and thus there were close correlation between the broiler performance and the measured nutritive values of SBM. In conclusion, dehulled SBM from USA was superior to non- dehulled SBM from ARG and IND with regard to nutritive values.

A Study on Formulation of Surfactant-free Aqueous Cleaning agents and Evaluation of Their Physical Properties and Cleaning Ability (계면활성제 무첨가 세정제의 배합 및 물성/세정성 평가 연구)

  • Lee, Jae Ryoung;Yoon, Hee Keun;Lee, Min Jae;Bae, Jae Heum;Bae, Soo Jeong;Lee, Ho Yeoul;Kim, Jong Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.219-225
    • /
    • 2013
  • Environment-friendly and surfactant-free aqueous cleaning agents have been developed in order to solve various problems generated by surfactants in the aqueous cleaning agents. Aqueous surfactant-free cleaning agents, S-1 and S-2 have been formulated with water-soluble solvents such as propylene glycol and propylene glycol ether on their main components and with some additives. These solvents were chosen because of their good solubility in water and excellent solubility of fluxes which are major contaminants of printed circuit board in the electronic industry. Physical properties of the formulated and the imported cleaning agents were measured to predict their cleaning performance, and their cleaning abilities of flux and solder contaminants were evaluated under the various ultrasonic frequencies by a gravimetric method. The measurement results show that the physical properties of cleaning agent V are generally similar with those of formulated cleaning agents S-1 and S-2. Both the cleaning agent V and the formulated cleaning agents S-1 and S-2 showed similar trends that their pH decrease in the beginning and then increases later on with the increase of their dilution in water. It is considered that the wetting indices of the cleaning agents calculated with experimental values do not not have any influence on their cleaning ability. In ultrasonic cleaning tests under three ultrasonic frequencies of 28, 45, and 100 kHz, their best performances of cleaning solder and flux were obtained at 45 kHz and 28 kHz, respectively, and the cleaning performance of the formulated cleaning agents S-1 and S-2 was better than that of the cleaning agent V. However, in the case of the recommended diluted concentration of 25 wt% cleaning solution, the cleaning performance of the cleaner V for solder and flux was better in the initial stage of cleaning compared to the formulated cleaners. And it may be concluded that the formulated cleaning agents S-1 and S-2 can be applied to cleaning of solder and flux in the industry, based on the experimental results in this study.

Physicochemical properties and microencapsulation process of rice fermented with Bacillus subtilis CBD2 (Bacillus Subtilis CBD2로 배양된 백미 발효물의 미세캡슐 제조 및 물리화학적 특성)

  • Lee, Dae-Hoon;Park, Hye-Mi;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • This study was conducted to examine the physicochemical properties and micro-encapsulation process of rice fermented with Bacillus subtilis CBD2. The viable bacterial cell, pH, and amylase activity of the rice liquid culture were 7.61 log CFU/mL, pH 5.08 and 159.43 units/mL, respectively. The micro-encapsulated rice liquid culture was manufactured via spray drying with different forming agents: i.e., alginic acid 1.0% and chitosan 0.3%, 0.5%, and 1.0%. The moisture contents of the spray-dried powders were approximately 2.90~3.68%. The color of the L and a value decreased whereas that of the b and ${\Delta}E$ value increased. The particle size and outer topology of the spray-dried rice liquid culture were $48.13{\sim}68.48{\mu}m$ and globular, respectively. The water absorption index of the spray-dried powder (2.40~2.65) was lower than that of the freeze-dried powder (2.66). The water solubility index of the spray-dried powder (9.17~10.89%) was higher than that of the freeze-dried powder (7.12%). The in vitro dissolution was measured for five hours in pH 1.2 simulated gastric fluid, and pH 6.8 and pH 7.4 simulated intestinal fluids, using a dissolution tester at $37^{\circ}C$ with 50 rpm agitation. The amylase survival in the fermented rice was 85.93% through the spray-drying and it was very effectively controlled.

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

Preblending Effects of Curing Agents on the Characteristics of Mechanically Deboned Chicken Meat (염지제 종류와 혼합에 따른 기계발골 계육의 가공 특성과 저장성)

  • Kang, Soo-Yong;Park, Ki-Soo;Choi, Yang-Il;Lee, Sang-Hwa;Auh, Joong-Hyuck
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.220-228
    • /
    • 2009
  • This study was conducted to determine the preblending effect of curing agents on the characteristics of mechanically deboned chicken meat (MDCM), including the pH, water-holding capacity (WHC), and stability under refrigeration conditions. MDCM was preblended with different curing agents [NaCl, 0.75 or 1.5%; sodium tripolyphosphate (STPP), 0.25 or 0.5%; ascorbic acid, 250 or 500 ppm; sodium nitrite, 75 or 150 ppm] and were stored at $4^{\circ}C$ overnight. The preblending of NaCl was found to have improved the WHC and emulsion stability; STPP was found to have improved the pH, WHC, and emulsion stability; and ascorbic acid or sodium nitrite did not affect the pH, WHC, and emulsion stability. The addition of ascorbic acid or sodium nitrite, however, decreased the 2-thiobarbituric acid (TBA) and volatile basic nitrogen (VBN) values of the preblended MDCM through the antioxidizing properties. The mixing effects of different curing agents on MDCM were also evaluated with nine different conditions. Among the treatments, the mixture of NaCl and STPP improved the WHC and emulsion stability due to the increased solubility of salt-soluble protein in the preblended MDCM. The mixture of NaCl, STPP, and ascorbic acid increased the pH, WHC, and emulsion stability, but the mixture of NaCl, STPP, ascorbic acid, and sodium nitrite improved the WHC, emulsion stability, and redness of the surface color with improved storage stability due to the decreased VBN and TBA values. As a result, the mixture of 1.5% NaCl, 0.5% STPP, 500 ppm ascorbic acid, and 75 ppm sodium nitrite showed the best properties as curing agents for MDCM preblending.

Development of Root Media Containing Pine Bark for Cultivation of Horticultural Crops (소나무 수피를 포함한 원예작물 재배용 혼합상토의 개발)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • This research was conducted to develop root media containing ground and aged pine bark (GAPB) and ground and raw pine bark (GRPB). After analysis of physico chemical properties, the pine barks were blended with peat moss (PM) or coir dust (CD) in various ratios to formulate 12 root media. Then, two out of 12 root media were chosen based on the physical properties for further experiments. The pre-planting nutrient charge fertilizers (PNCF) were incorporated into two root media and chemical properties were analysed again. The total porosity (TP), container capacity (CC), and air-filled porosity (AFP) of GAPB were 78.7%. 39.4%, and 38.3%, respectively, while those of GRPB were 74.7%, 41.2%, and 33.4%, respectively. The percentage of easily available water (EAW, from CC to 4.90 kPa tension) and buffering water (BW, 4.91-9.81 kPa tension) in GAPB were 12.7% and 8.5%, respectively, which were a little lower than the 13.5% and 8.8% in GRPB. The pH and EC were not different significantly, but cation exchange capacity was different between the two pine barks (GAPB: pH 5.26, EC $0.61dS{\cdot}m^{-1}$, CEC $15.7meq{\cdot}100g^{-1}$; GRPB: pH 5.19, EC $0.32dS{\cdot}m^{-1}$, CEC $9.32meq{\cdot}100g^{-1}$). The concentrations of exchangeable cations in GAPB were Ca 0.32, K 0.05, Mg 0.27 and $0.12cmol+{\cdot}kg^{-1}$, whereas those in GRPB were Ca 0.28, K 0.08, Mg 0.25 and $0.09cmol+{\cdot}kg^{-1}$. The concentrations of $PO_4$-P, $NH_4$-N and $NO_3$-N were 485.8, 0.62 and $0.91mg{\cdot}L^{-1}$ in GAPB and 578, 1.00 and $0.82mg{\cdot}L^{-1}$ in GRPB, respectively, when those were analyzed in the solution of the saturated paste. The TP, CC and AFP in the two selected media were 89.3 and 76.3, and 13.0% in PM+GAPB (8:2, v/v) and 88.2, 68.2 and 20.0% in CD+GRPB (8:2), respectively. The pHs and ECs were 3.8 and $0.24dS{\cdot}m^{-1}$ in PM+GAPB which were a little lower than 5.8 and $0.65dS{\cdot}m^{-1}$ in CD+GRPB. However, the pHs analysed before and after incorporation of PNCF in the two root media did not show large differences. This is because the solubility of dolomitic lime is very low, and the pH it is expected to rise gradually when crops are cultivated int he root media. The information obtained in this study should facilitate effective formulation of root media containing pine bark.

Antitumor Activity and Nephrotoxicity of the Novel Platinum(II) Coordination Complex (새로운 Platinum (II) Complex [Pt (II)(trans-d-dach)(DPPE)] $(NO_3)_2$의 항암효과 및 신독성에 관한 연구)

  • Jung Jee-Chang;Lee Moon-Ho;Chang Sung-Goo;Rho Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.103-114
    • /
    • 1995
  • Platinum coordination complexes are currently one of the most compounds used in the treatment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (Ⅱ) complex analogue containing 1,2-diaminocyclohexane (dach) as carrier ligand and 1,2-bis(diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(trans-ddach)(DPPE).$2NO_3(PC)$ was synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. PC demonstrated acceptable antitumor activity aganist P388, L-1210 lymphocytic leukemia cells and SK=OV3 human ovarian adenocarcinoma cells, and significant. activity as compared with that. cisplatin. The toxicity of PC was found quite less than thar of cisplatin using MTT, $[^3H]$ thymidine uptake and glucose consumption tests in rabbit proximal tubule cells, human kidney cortical cells and human renal cortical tissues. Based on these results, this novel platinum compound represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low toxicity.

  • PDF

Evaluating the Performance of Draw Solutions in Forward Osmosis Desalination Using Fertilizer as Draw Solution (유도용액으로 비료를 사용한 정삼투 해수담수화에서 유도용액의 성능 평가)

  • Jeong, Namjo;Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.400-408
    • /
    • 2014
  • This study is to evaluate the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution. Considering osmotic pressure, solubility, and pH, $NH_4NO_3$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, KCl, $KNO_3$, and $KHCO_3$ were screened from a comprehensive lists of fertilizer. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen and phosphorus. KCl showed the highest pure water permeate flux among the selected fertilizers while $(NH_4)_2HPO_4$ draw solution had the lowest flux. $NH_4H_2PO_4$ showed the lowest reverse solute flux and specific reverse solute flux for nitrogen followed by $(NH_4)_2HPO_4$, $KNO_3$, and $NH_4NO_3$. Although the pure water permeate flux of $NH_4H_2PO_4$ is lower than the other draw solutions, because it contains both nitrogen and phosphorus, and have the lowest reverse solute flux and specific reverse solute flux, it is a promising candidate as draw solution for forward osmosis desalination.

The Performance Evaluation of Blended Fertilizers as Draw Solution in Forward Osmosis Desalination (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 혼합비료의 성능평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study is to find the optimum draw solution in fertilizer-drawn forward osmosis desalination. Considering osmotic pressure, solubility, and pH, 20 blended fertilizers were screened. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen, phosphorus, and potassium. The pure water permeate flux of blended fertilizers including KCl were relatively higher. The reverse solute flux and specific reverse solute flux for nitrogen of blended fertilizers containing ${NO_3}^-$ ion were relatively higher than those of the nitrate ion-free draw solution. Those for phosphorus, and potassium of blended fertilizers including $NH_4H_2PO_4$, and $KNO_3$ were relatively higher than those of the phosphorus-free, and potassium-free draw solution, respectively. The blended fertilizer of $NH_4H_2PO_4$ and KCl contains all of nitrogen, phosphorus and potassium which are essential elements of fertilizer, and has the relatively high water permeation flux and the low reverse solute flux for nitrogen, phosphorus, and potassium. Therefore, it is the most effective draw solution for fertilizer-drawn forward osmosis desalination.