• Title/Summary/Keyword: P solubility

Search Result 938, Processing Time 0.027 seconds

A Comparison Study on Functional Properties of Mungbean Protein and Chemically Modified Mungbean Protein (분리 녹두 단백질과 이를 화학적으로 수식화한 단백질간의 식품학적 기능성 비교)

  • Sohn, Kyung-Hee;Min, Sung-Hee;Park, Hyun-Kyung;Park, Jin
    • Korean journal of food and cookery science
    • /
    • v.7 no.3
    • /
    • pp.53-59
    • /
    • 1991
  • This study was carried out in order to investigate the change of protein functionalities such as foaming and emulsifying properties by succinylation of protein isolates. Succinylated and unsuccinylated munghean protein isolates were tested for finding out the effects of pH, heat treatment and sodium chloride concentration on the solubility, emulsion capacity, emulsion stability, foaming capacity, and foam stability. The results are summarized as follows: 1. Succinylation enhanced the solubility of MPI except at pH 4.5. When heated, succinylation greatly increased the solubility of succinylated MPI above $60^{\circ}C$. With the addition of NaCl, succinylation increased the solubility of MPI at acidic condition. 2. Emulsion capacity of succinylated MPI showed the lowest value at pH 7 and higher values at acidic and alkaine condition. when succinylated MPI was heated, emulsion capacity showed the highest at $80^{\circ}C$. With NaCl was added, emulsion capacity of succinylated MPI lincreased at pH 7, 9 or 11 decreased at pH 3 except addition of 1.0M NaCl. 3. Emulsion stability of MPI and succinylated MPI showed the highest at pH 4.5. Succinylation enhanced the emulsion stability of MPI at acidic condition. 4. The foaming capacity of MPI was increased at pH 3, 7 or 9 by succinylation. 5. When heated, foam stability of MPI and succinylated MPI showed the highest at pH 4.5 and at pH 11, respectively. When heated, both proteins showed the highest stability at $100^{\circ}C$.

  • PDF

A Comparison Study on Functional Properties of Peanut Protein and Chemically Modified Peanut Protein (분리 땅콩 단백질과 화학적으로 수식화한 단백질간의 식품학적 특성 비교)

  • Sohn, Kyung-Hee;Min, Sung-Hee;Park, Hyun-Kyung;Park, Jin
    • Korean journal of food and cookery science
    • /
    • v.7 no.2
    • /
    • pp.97-104
    • /
    • 1991
  • This study was carried out in order to study the protein functionality such as foaming and emulsifying properties by succinylation of peanut protein isolates. Succinylated and unsuccinylated peanut protein isolate was tested for to find out the effect of pH, heat treatment and sodium chloride concentration on the solubility, foam expansion, foam stability, emulsion capacity and emulsion stability. The results are summarized as follows; 1. Succinylation enhanced the solubility of peanut protein isotate (PPI). The solubility of succinylated PPI markedly increased at pH 4.5. When the protein solutions was heated, the solubility of succinylated PPI greatly increased than PPI at pH 3. With addition of NaCl, solubility of succinylated PPI increased at pH 7 and pH 9. 2. The foam expansion of PPI and succinylated PPI on pH was no difference between both proteins. Addition of NaCl and heat treatment caused steeply increased in foam expansion at pH 3. 3. The foam stability of PPI and succinylated PPI showed the lowest value at pH 4.5. When PPI and succinylated PPI was heated, foam stability of two proteins incensed at pH 3 and showed similar aspects between PPI and succinylated PPI. However, at pH 9 stability of succinylated PPI decreased by heat treatment over $60^{\circ}C$. 4. Emulsion capacity of succinylated PPI on pH was markedly increased and showed the highest value at pH 11. At pH 4.5 which is isoelectric point of PPI, emulsion capacity of PPI by succinylation improved than that of PPI. When succinylated PPI was heated, emulsion capacity was greatly increased at pH 2 and pH 7. With NaCl was added, emulsion capacity of succinylated PPI increased than that of PPI. 5. Emulsion stability of PPI and succinylated PPI was affected by pH and showed its highest value at pH 11. At pH 4.5, emulsion stability of succinylated PPI increased than that of PPI. Addition of NaCl and heat treatment caused slightly increased in emulsion stability of succinylated PPI.

  • PDF

Influence of Extrusion on the Solubility of Defatted Soybean Flour in Enzymatic Hydrolysis

  • Cha, Jea-Yoon;Shin, Han-Seung;Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.

Effects of Host Cell on the Morphology and Solubility of CryI and CytA Protein of Bacillus thuringiensis (Bacillus thuringiensis의 CryI과 CytA 단백질의 형태와 용해도에 대한 숙주의 영향)

  • Kim, Moo-Key;Ahn, Byung-Koo
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • The cryIB, truncated cryIB$[cryIB({\alpha})]$, cryIA(b), and cytA genes, encoding 135-, 89-, 131-, and 27-kDa proteins, respectively, from Bacillus thuringiensis were cloned into a shuttle vector pBES and expressed in E. coli and Bacillus species. The morphology and solubility in alkaline buffer of the insecticidal crystal proteins were investigated. Transformation of intact cells of E. coli and Bacillus species was achieved by electroporation. High field strength of 11.0 kV/cm and resistance of 129 ohms were required for efficient transformation of E. coli strains and 4.5 kV/cm and 48 ohms for Bacillus species. Strains of recombinant E. coli and Bacillus species produced the insecticidal crystal proteins and accumulated as the same bipyramidal and irregular structures as those of CryIB and IA(b) and CytA of B. thuringiensls, respectively. The insecticidal crystal proteins accumulated in recombinant E. coli wire smaller in size than those in recombinant Bacillus species. The solubility in alkaline buffer of the insecticidal crystal proteins of recombinant E. coli increased gradually as the pH increased, whereas in the case of Bacillus species the solubility increased gradually as the pH increased up to 9 and then the solubility increased greatly up to two times higher than that of E. coli proteins.

  • PDF

Preparing Method and Physico-chemical Characteristics of $Terfenadine-{\beta}-Cyclodextrin$ Inclusion Compound (테르페나딘-${\beta}$-시클로덱스트린 포접화합물의 제조방법 및 물리화학적 특성)

  • Choi, Han-Gon;Ryu, Jei-Man;Yoon, Sung-June
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.219-223
    • /
    • 1997
  • Terfenadine, antihistaminic drug, is poorly soluble in water. The purpose of this study is to investigate the possibility of using $terfenadine-{\beta}-cyclodextrin$ inclusion compound, instead of terfenadine, as the active substance of solid dosage form by improving the solubility, dissolution and anti-histaminic activity of terfenadine. The solubility and binding characteristics of $terfenadine-{\beta}-cyclodextrin$ complex in pH $1.2{\sim}6.8$ were investigated. Furthermore, the preparing method of $terfenadine-{\beta}-\;cyclodextrin$ inclusion compound was setting up and its physico-chemical characteristics such as DSC curve, solubility, dissolution and anti-histaminic activity were investigated. In conclusion, the solubility of terfenadine was increasing ${\beta}-cyclodextrin$ and with the decreasing pH. $Terfenadine-{\beta}-cyclodextrin$ inclusion compound, whose yield is almost 100%, was prepared by neutralization method. This inclusion compound was 200-times as soluble as terfenadine in pH 1.2-6.8. In addition, it had the faster dissolution and anti-histaminic activity than terfenadine. Therefore, it is used to the active substance of solid dosage form such as tablet and capsule in stead of terfenadine.

  • PDF

Synthesis and Physicochemical Studies on a Novel Cephalosporin, DWC-751 (신규 세파로스포린 항생제 DWC-751 합성과 물성연구)

  • 김명구;안상근;최영기;문치장;오세한;성무제;윤길중;신종만;김학형
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.103-108
    • /
    • 1993
  • The synthesis and physicochemical properties of a novel cephalosporin, DWC-751 are described. DWC -751, (6R , 7R)-7-[ (Z)-2-(2-aminothiazol-4-yl)-2- methoxyiminoacetamido]-3-[(1-methylbenzotriazol-3-ium) methyl]-ceph-3-em-4-carboxylate monosulfate($IV_{\alpha}$) was conveniently obtained by the conversion of compound (IV) into the crystalline monosulfate. Adjusting pH 4.8-5.2 in aqeous solution of the crude crystalline, compound(IV) in the form of a crystalline pentahydrate was prepared with a high degree of purity. The influence of the various organic and inorganic acids on the solubility of compoud(IV) and its salts, was examined. Particularly, the solubility of DWC-751 was 92 mg/mι at pH 1.7 and 233 mg/mι at pH 3.0. DWC-751 showed a broad antimicrobial spectrum against gram-positive and negative bacteria.

  • PDF

Preformulation Study of Aloesin in Buffered Aqueous Solutions (완충 수용액 중 Aloesin의 전처방화 연구)

  • 이윤진;곽혜선;전인구
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.168-173
    • /
    • 2002
  • The physicochemical properties of aloesin, which has been recently found to reduce renal toxicity induced by cis-platin, were studied including solubility, partition coefficient ( $P_{c}$ ), osmolality, and stability. The solubility of aloesin was about 500 mg/mι, and the $P_{c}$ value for n-octanol/water was 1.01 $\pm$ 0.03. The degradation of aloesin followed the pseudo-first-order kinetics and was dependent on temperature, pH and ionic strength. From the pH-rate profile, the optimal pH was found to be 2.0~3.0. Some metal ions increased the degradation rate in the rank order of M $n^{2+}$ > F $e^{3+}$ > C $u^{2+}$ > F $e^{2+}$. On the other hand, other metal ions such as B $i^{3+}$, $Ba^{2+}$, Z $n^{2+}$, N $i^{2+}$, $Co^{2+}$ and $Mg^{2+}$ did not show the unfavorable effects. After autoclaving, aloesin contents remaining were 81.8~98.8% of initial concentrations depending on pH. The most stable pH was 3.98 in the autoclaving. Osmolality increased linearly as concentration increased.sed.creased.sed.

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Solubility and Stability of Melatonin in Propylene glycol and 2-hydroxypropyl-${\beta}$-cyclodextrin vehicles

  • Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Parrott, Keith-A.;Ayres, James-W.;Sack, Robert-L.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.560-565
    • /
    • 1997
  • The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-.betha.-cyclodextrin $(2-HP{\beta}CD)$ vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were $116.9{\pm}0.24^{\circ}C $.and $7249{\pm}217 cal/mol$., respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of $2-HP{\beta}CD$ without PG INCREASED$(R^2=0.993)$. MT solubility in the mixtures of pg and $2-HP{\beta}CD$ also increased linearly but was less than the sum of its solubility in $2-HP{\beta}CD$ and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG(40v/v%) and $2-HP{\beta}CD$ (30w/v%) although efficiency of MT solubilization in $2-HP{\beta}CD$ decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics $(r^2>0.90)$. MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4-10 at $70^{\circ}C$. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed dpwm at a higher concentration. However, the degradation rate constant of MT in 2-HP.betha.CD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  • PDF

Enhancing the Physicochemical Properties of Sodium Iodide-based Root Canal Filling Material with Lanolin Incorporation

  • Hye Shin Park;Jongsoo Kim;Joonhaeng Lee;Jisun Shin;Mi Ran Han;Jongbin Kim;Yujin Kim;Junghwan Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.140-148
    • /
    • 2024
  • This study aimed to enhance the physicochemical properties of sodium iodide-based root filling materials, particularly solubility. In earlier developmental stages, the iodoform-containing paste exhibited high antibacterial efficacy but failed to meet only the solubility requirement among the ISO 6876 criteria. Therefore, this study focused on enhancing the physicochemical properties of the paste under development, particularly centering on reducing its solubility. Four experimental groups were established, including three control group. The previously developed D30 paste was named the Oil 33 group, and the control group was named the Vitapex® group. The Oil 50 group, in which the oil content was increased, and the Oil 45L group, in which lanolin was incorporated. The physical properties (solubility, pH, flowability, and film thickness) of the four pastes were evaluated according to the ISO 6876 standards. No significant differences were observed between the Oil 45L and Vitapex® groups in any of the physical property evaluations. While the Oil 33 and Oil 50 groups met the ISO 6876 standards for flowability and film thickness, the Oil 45L group met all the physical properties. However, reducing the overall oil content may be necessary to enhance the antimicrobial properties. The result of the physicochemical experiments showed that the Oil 45L group with the newly formulated composition and incorporated lanolin exhibited low solubility meeting the ISO 6876 standard of ≤ 3%. We were able to develop a paste with more stable solubility than previous iodide-based root-filling materials. Therefore, the oil content must be further adjusted to improve its antimicrobial properties. If other physical properties also meet the ISO 6876 standards and demonstrate excellent results in cytotoxicity tests, this root filling material could potentially replace existing options.