• Title/Summary/Keyword: P solubility

Search Result 938, Processing Time 0.033 seconds

Solubility Studies of Uranyl Hydrolysis Precipitates (우라닐 가수분해물의 용해도 연구)

  • Park, Yong-Joon;Pyo, Hyung-Ryul;Kim, Won-Ho;Chun, Kwan-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.599-606
    • /
    • 1996
  • The effects of chemical species in groundwater on the solubility of the uranyl hydrolysis precipitates formed at pH 6.4 and 9.7 were investigated. Based on the chemical composition of the groundwater, the synthetic groundwater was prepared. The colloid-free (separated) groundwater was also prepared by removal of both organic and inorganic colloids from the sampled groundwater. Solubilities of precipitates formed in the hydrolysis of uranyl ion in groundwater, separated groundwater, synthetic groundwater and 0.1 M NaCl solution were measured over neutral to alkaline pH range, and especially, the effect of the anions and cations found in groundwater on the solubility was investigated. Solubility in groundwater was approximately two orders of magnitude greater than that in 0.1 M NaCl solution. Soubililties of uranyl hydrolysis precipitates formed at pH 9.7 and 6.4 were compared in groundwater and synthetic groundwater. Solubilities of the precipitates formed at different pH were found to be in the same order of magnitude in groundwater and synthetic groundwater, however the uranyl hydolysis precipitates formed at higher pH values showed a tendency of higher solubility.

  • PDF

Effect of pH, Redox Potential (Eh) and Carbonate Concentration on Actinides Solubility in a Deep Groundwater of Korea

  • Keum Dong-Kwon;Lee Han-Soo;Lee Chang-Woo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.196-202
    • /
    • 2004
  • KAERI (Korea Atomic Energy Research Institute) is at present preparing a preliminary performance assessment to set up the HLW disposal concept of Korea. The solubility of the radionuclides contained in HLW is necessary as a source term in order to predict their potential migration in both the near and far fields. The solubility of actinides (Th, Am, U, Np and Pu) for a reference deep groundwater of Korea has been calculated using a geochemical code with thermodynamic data selected by a peer review of existing thermodynamic databases and literature. The solubilities from the experimental study and/or field observations from natural analogue studies are compared. The sensitivity of solubility to the variability of three main parameters of groundwater (pH, Eh, and carbonate concentration) is also investigated. The results of the sensitivity analysis show that the solubility of actinides strongly depends on the parameters considered. Within the range of parameter values studied (pH=7 to 10, Eh=-0.4 to -0.1V, and carbonate concentration=1.E-5 to 1.E-2 mol/L), the solubility of each actinide exists between 1.4E-10 and 1.6E-6 mol/L for Am, 4.9E-9 and 2.8E-6 mol/L for Th, 3.2E-9 and 5.7E-4 mol/L for U, 1.1E-9 and 1.0E-7 mol/L for Np, and 4.0E-11 and 2.8E-6 mol/L for Pu, respectively.

Preformulation Study of Aspalatone, a New Antithrombotic Agent (새로운 항혈전 약물인 아스팔라톤의 전처방화 연구)

  • 곽혜선;전인구
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.332-337
    • /
    • 2000
  • Physicochemical properties of aspalatone (acetylsalicylic acid maltol ester, AM), which has been recently found to have an antithrombotic effect, were studied in terms of solubility, dissolution, partition coefficient (Pc) and stability. The solubility of AM at 37$^{\circ}C$ was about 1.2 mg/ml and the P$_{c}$ value for n-octanol/water and chloroform/water was 11.4 and 382.6, respectively. Dissolution rates of AM at pH 1.2 and 6.8 were more than 80% within 30 min. The degradation of AM followed apparent first-order kinetics, and was dependent on temperature, pH and ionic strength. From the pH-rate profile, the optimal pH was found to be at around 4.0. Half-lives at pH 1.2 and 6.8 were 33.5 and 44.4 hr, respectively. The degradation rate of AM at pH 1.2 was somewhat faster than that of aspirin, but at pH 7.0, the degradation rate of AM was slower than that of aspirin.n.

  • PDF

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF

A Study on the Inclusion Complexation of Octyldimethyl p-aminobengoate with \brta -Cyclodextrin$ (Octyldiinethyl p-aminobenzoate와 \brta -Cyclodextrin$의 포접화합물에 관한 연구)

  • Lee, Chang-Hak;So, Bu-Yeong;Kim, Yeong-Su
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.15 no.1
    • /
    • pp.51-62
    • /
    • 1989
  • Inclusion complex formation of octyldimethl p-aminobenzoate with $\beta$-cyclodextrin in aqueous solution and in the solid state was studied by the solubility method, spectroscopic(UV, FT-lR) and X -ray diffractometry. The solid complex of octyldimethy p-aminobenzoate with $\beta$-cyclodextrin was obtained in molar ratio of 1 : 2(guest/host). A spatial relationship between host and guest molecule was clearly reflected in the magnitude of the apparent stability constant (K') and in the stoichiometry of the inclusion complex. Furthermore, a typical type Bs phase-solubility diagram was obtained for octyldimethyl p-aminobenzoate and p -cyclodextrin in water at $25^{\circ}C$. The results indicated that the solubility of the guest molecule was higher by the formation of $\beta$-cyclodextrin inclusion complex.

  • PDF

Solubility and Physicochemical Stability of Caroverine Hydrochloride in Aqueous Solution (수용액중 염산카로베린의 용해성 및 안정성)

  • Gwak, Hye-Sun;Lee, Dong-Soo;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 1998
  • The solubility and physicochemical stability of caroverine hydrochloride (CRV), an antispasmodic, in buffered aqueous solutions were studied using a reverse phase high performance liquid chromatography. The solubilty of the drug at pH 2.76-5.40 was similar at the range 31.9-36.2 mg/ml $(34^{circ}C)$, but, at the pH higher than 6.0, markedly decreased. The use of polyethylene glycol 400 as a cosolvent did not increase the solubility at any compositions examined. Moreover. increasing molar concentration of aqueous phosphate buffer from 0 to 0.5 M remarkably decreased the solubility. The degradation of CRY followed the apparent first-order kinetics. The degradation was accelerated with decreasing pH and increasing storage temperature. The half-lives for the degradation of CRY (1.0 mg/ml) at pH 1.28. 4.01 and 5.93 $(45^{\circ}C)$ were 2.8, 31.4 and 124 hr. respectively. The pHs of incubated solutions were to some extent lowered perhaps due to the formation of acidic degradation products. The addition of disodium edetate (0.01%) to the CRY solution (pH 4.95) retarded 2.5 times the degradation rate at $45^{\circ}C$, but the use of sodium bisulfite (0.1%) accelerated 2.9 times the rate. The activation energy for the CRY solution (20 mg/ml. pH 5.4) containing 0.01% EDTA was calculated to be 5.98 kcal/mole. When the solution was stored under nitrogen displacement in ampoule, there was no significant degradation even after 3 months at $40^{\circ}C$, indicating that protection from oxidation by air (oxygen) is essential for the complete stabilization of CRY solution.

  • PDF

Soluble Characteristics of Deer Young Antler, Deer antler, Oystershell, Crabshell and Eggshell to Organic Acid (녹용.녹각.굴껍질.게껍질.달걀껍질의 유기산에 대한 용해 특성)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • The 2%, 3% of deer young antler, deer antler, oystershell, crabshell, eggshell were add into the 5%, 10%, 15% solution of glacial acetic acid and vinegar and after incubating it for 4 days at $30^{\circ}C$ respectively, solubility was analyzed. The result shows the difference was minute between glacial acetic acid and vinegar. In the 2% content of deer young antler, solubility was 42~47%, in the 3% content of it, solubility was 41~47%, with the acid concentration becoming higher, solubility increased slightly. In the 2% content of deer antler, solubility was 59~63%, in the 15% content of acid, solubility rather decreased. In the 2% content of oystershell, solubility was 85~96%, in the 3% content, solubility was 95~98%, in the 15% of acid density, it decreased. In the 2% content of crabshell, solubility was 79~88%, in the 3% content, solubility was 81~95%, and in case that acid density was high, solubility increased rather slightly. In the 2% content of eggshell, solubility was 84~96%, in the 3% content, solubility was 84~93%. When young deer antler and deer antler were heated for two hours at $100^{\circ}C$, solubility increased 19~24%, and in the case of crabshell, 10~11% increased. The above result and condition, and the result of pH and acidity don't have much influence on solubility. Thus, the 5% of acidity was enough to melt the 3% of sample. Highest were glacial acetic acid and vinegar in solubility to the various organic acid, and wax gourd vinegar melted the 85% of oystershell, the 78% of crabshell, the 28% of the deer young antler, and in the precipitation was made. Citric acid melted the 57% of deer antler, but it was precipitated with all other samples. Ascorbic acid melted the 92% of eggshell, and did the 37~54% of other samples.

A Study on the Inclusion Complexation of Octyldimethyl p-aminobenzoate with ${\beta}-Cyclodextrin$ (Octyldimethl p-aminobenzoate 와 ${\beta}-Cyclodextrin$의 포접화합물(包接化合物)에 관(關)한 연구(硏究))

  • Lee, Chang-Hak;So, Boo-Young;Kim, Young-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • Inclusion complex formation of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$in aqueous solution and in the solid state was studied by the solubility method, spectroscopic (UV, FT-IR) and X-ray diffractornetry. The solid complex of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$ was obtained in molar ratio of 1:2 (guest/host). A spatial relationship between host and guest molecule was clearly reflected in the magnitude of the apparent stability constant (K') and in the stoichiometry of the inclusion complex. Furthermore, a typical type Bs phase-solubility diagram was obtained for octyldimethyl p-aminobenzoate and ${\beta}-cyclodextrin$ in water at $25^{\circ}C$. The results indicated that the solubility of the guest molecule was higher by the formation of ${\beta}-cyclodextrin$ inclusion complex.

Comparative Analysis of Water Absorption and Water Solubility of Alkasite-based Restorative Material

  • Myeong-Gwan Jih;Hye-Jin Cho;Eu-Jin Cha;Tae-Young Park
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.74-79
    • /
    • 2023
  • Purpose: Cention N (Ivoclar Vivadent) was a recently introduced alkasite-based restorative material that was expected to replace amalgam and glass ionomer cement. This material was an esthetic restoration with adequate mechanical strength and release of fluoride and calcium. The purpose of this study was to measure the water sorption and water solubility of Cention N and evaluate its long-term durability compared to other esthetic restorations (Resin-Modified Glass Ionomer cement [RMGIC], Giomer, Composite Resin). Materials and Methods: Twenty specimens each of Cention N (CN), Resin Modified-Glass Ionomer Cement (FJ), Giomer (BF), and Composite Resin (FZ) were made. After each specimen was completely dried in a desiccator for 24 hours using a vacuum pressure pump, the specimen was weighed (m1). After that, the specimen was immersed in distilled water at 37℃ for 7 days, stored in a drying oven, and weighed (m2). After drying completely for 24 hours in a desiccator, the specimen was weighed (m3) to calculate the water absorption and water solubility using Formulas 1 and 2. The measured values were statistically processed and analyzed using SPSS, and the significance level was set at 0.05. Result: When measuring water sorption, FJ (122.61 ㎍/mm3) showed significantly higher water sorption than CN (35.42 ㎍/mm3) (P<0.05). There was no significant difference between FZ (18.03 ㎍/mm3) and BF (14.76 ㎍/mm3) (P=0.930). When measuring water solubility, CN (6.65 ㎍/mm3) showed significantly higher water solubility than FJ (1.47 ㎍/mm3) (P<0.05). Conclusion: Cention N had lower water sorption than RMGIC, but higher water solubility, indicating that it is more vulnerable to moisture and has lessened long-term durability.

Effects of Organic Acids on Solubility of Calcium (칼슘용해에 미치는 유기산의 영향)

  • Jang, Se-Young;Park, Nan-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.501-506
    • /
    • 2005
  • This study was conducted to investigate the effect of organic acids on solubility of calcium. As a results, acetic and lactic acid showed the most excellent solubility of calcium. Calcium solubility was increased at initial total acid (4%) in citric acid but calcium was insoluble in tartaric acid. After solving, pH and residuals were decreased where as total acidity and calcium content were increased as increment of initial acidity of acetic and lactic acid. Calcium content in seaweed calcium and calcium carbonate were higher than that of nano calcium. Solubility of calcium was more conspicuous at lactic acid than acetic acid.