• Title/Summary/Keyword: P loading model

Search Result 232, Processing Time 0.032 seconds

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

A Study on Scale and Characteristics of Nonpoint Pollution Using STORM Model (STORM 모형을 이용한 비점오염원 부하의 규모와 특성에 관한 연구)

  • 김도연;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1996
  • The more accurate estimation of the pollutant loadings from nonpoint source is needed to evaluate water quality of water resources such as river and reservoir. Therefore this study was performed to grasp the scale and characteristics of pollutant. In this study, STORM model was applied to I-cheon district to estimate runoff and pollutant loading of SS, BOD, T-N and $PO_4-P$. The results estimated by STORM model were fitted well to surveyed water quality in flow, SS and BOD. The annual loadings were estimated to be 36,463 kg/$km^3$/yr of SS, 8,090 kg/$km^3$/yr of BOD, 4,435 kg/$km^3$/yr of T-N and 358 kg/$km^3$/yr of $PO_4-P$. It was also found that the monthly pollutant loadings of SS, BOD, $PO_4-P$ were greatest in May and T-N in April.

  • PDF

Evaluation of YasufukuYs Constitutive Model for Compacted Weathered Granite Soil (다짐풍화화강토에 대한 Yasufuku 구성모델의 평가)

  • ;;Li Guang Fan
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.43-55
    • /
    • 1999
  • This study evaluated Yasufuku's constitutive model in terms of its capability to accurately consider the observed behavior of Iksan compacted weathered granite soil for various stress-paths. The strains calculated from the model are in reasonable agreement with those measured, but some discrepancies occur. The largest differences between measured and calculated strains occur for axial strain of proportional loading with increasing stress. Yasufuku's constitutive model can consider the observed behavior of Iksan compacted weathered granite soil with accuracy for conventional triaxial compression and for p'-constant loading with increasing stress ratio.

  • PDF

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Trophic State and P Loading Analysis for Juam Lake (주암호 영양상태 및 인부하 분석)

  • Bae, Sang-Ok;Lee, Yong-Woon;Lee, Sung-Woo;Chung, Seon-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.291-300
    • /
    • 2000
  • Juam lake is a major water reservoir for the industrial and agricultural activities as well as the residental life of Kwangju and Chonnam regions. However, the water quality of the lake is getting worse due to a large quantity inflowing to the lake. The excessive growth of algae by the overfertilization may result in water treatment problems and also the interference with desirable water uses of navigation, aesthetics, recreation, and aquatic ecosystem. Thus the purpose of this study is to investigate the species and their amount of planktons in the lake and the relationship between the P loading amount and the chlorophyll-a used as a primary productivity index. The results of the investigation show that (1) the predominant species of algae are Microcystis aeruginosa, Anabaena affinis, Melosira granulata, Synedra acus, and Coelastrum cambricum, (2) the trophic state of the lake can be classified as eutrophic, and (3) there is close relation between the P loading amount and the chlorophyll-a.

  • PDF

Inelastic two-degree-of-freedom model for roof frame under airblast loading

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.321-335
    • /
    • 2009
  • When a roof frame is subjected to the airblast loading, the conventional way to analyze the damage of the frame or design the frame is to use single degree of freedom (SDOF) model. Although a roof frame consists of beams and girders, a typical SDOF analysis can be conducted only separately for each component. Thus, the rigid body motion of beams by deflections of supporting girders can not be easily considered. Neglecting the beam-girder interaction in the SDOF analysis may cause serious inaccuracies in the response values in both Pressure-Impulse curve (P-I) and Charge Weight-Standoff Diagrams (CWSD). In this paper, an inelastic two degrees of freedom (TDOF) model is developed, based on force equilibrium equations, to consider beam-girder interaction, and to assess if the modified SDOF analysis can be a reasonable design approach.

Spatial Analysis of Nonpoint Source Pollutant Loading from the Imha dam Watershed using L-THIA (L-THIA를 이용한 낙동강수계 임하댐유역 비점오염원의 공간적 분포해석)

  • Jeon, Ji-Hong;Cha, Daniel K.;Choi, Donghyuk;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.17-29
    • /
    • 2013
  • Long-Term Hydrologic Impact Assessment (L-THIA) model which is a distributed watershed model was applied to analyze the spatial distribution of surface runoff and nonpoint source pollutant loading from Imha watershed during 2001~2010. L-THIA CN Calibration Tool linked with SCE-UA was developed to calibrate surface runoff automatically. Calibration (2001~2005) and validation (2006~2010) of monthly surface runoff were represented as 'very good' model performance showing 0.91 for calibration and 0.89 for validation as Nash-Sutcliffe (NS) values. Average annual surface runoff from Imha watershed was 218.4 mm and Banbyun subwatershed was much more than other watersheds due to poor hydrologic condition. Average annual nonpoint source pollutant loading from Imha wateshed were 2,295 ton/year for $BOD_5$, 14,752 ton/year for SS, 358 ton/year for T-N, and 79 ton/year for T-P. Amount of pollutant loading and pollutant loading rates from Banbyun watershed were much higher than other watersheds. As results of analysis of loading rate from grid size ($30m{\times}30m$), most of high 10 % of loading rate were generated from upland. Therefore, major hot spot area to manage nonpoint source pollution in Imha watershed is the combination of upland and Banbyun subwatershed. L-THIA model is easy to use and prepare input file and useful tool to manage nonpoint source pollution at screening level.