• Title/Summary/Keyword: P 파 속도

Search Result 219, Processing Time 0.028 seconds

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

Elastic Wave Characteristics According to Cementation of Dissolved Salt (용해된 소금의 고결화에 따른 탄성파 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.75-86
    • /
    • 2009
  • Salt, one of the most common soluble materials in engineering soil, may have an effect on mechanical behaviors of soils under its cementation process. In order to investigate this natural phenomenon, non-soluble material by using glass beads is mixed with salt electrolyte and cemented by using oven to evaporate water. Three different sizes of glass bead particles, 0.26, 0.5, and 1.29 mm, with different salt concentration, 0, 0.1, 0.2, 0.5, 1.0, and 2.0M, are explored by using P- and S-waves, excited by bender elements and piezo disk elemets, respectively. The velocities of the P-wave and S-wave of the particulate medium cemented by salt show three stages with the degree of saturation: 1) S-wave velocities increase while P-wave velocities reduce with degree of saturation changing from 100% to 90%; 2) Both velocities are stable with degree of saturation varying from 90% to 10%; 3) The velocities change enormously when the specimens are nearly dry with degree of saturation from 10% to 0%. Besides, the resonance frequencies of S-wave show similar stages to the S-wave velocities. This study demonstrates meaningful trends of elastic wave characteristics of geo-materials according to the cementation of dissolved salt.

The Phase-velocity Dispersion Characteristics of Love Wave and Rayleigh Wave in the Half Space and Multi-layered System (반무한체와 다층구조 지반에서 러브파 및 레일레이파의 위상속도 분산특성)

  • 이일화;조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • Rayleigh wave and Love wave are the major elastic waves belonging to the category of the surface wave. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleish wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than the information of Rayleigh wave. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave were extensively investigated by the theoretical, numerical and experimental approaches. The 2-D and 3-D finite element analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Also, the SASW measurements were performed at the geotechnical sites to verify the results obtained by the numerical analysis. The results of the numerical analysis and the field testing indicated that the dispersion characteristics of Love wave can be an extended information to make better evaluation of the subsurface stiffness structure by SASW method.

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

High frequency P velocity and attenuation coefficient of the rocks under the broad-band seismic station (광대역 관측소 하부 암석의 고주파수 탄성파 속도 및 감쇠상수에 대한 연구)

  • Lee, Duk-Kee;Oh, Seok-Hoon;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.165-174
    • /
    • 2002
  • Seismic velocity and attenuation coefficient of the rocks under the broad-band earthquake observatories of the Korea Meteorological Administration have been measured in the laboratory by using very high frequency seismic waves. Estimated P velocities of the rocks range from 3.2 km/s to 5.6 km/s, depending on the rock type, mineral, and weathering, while, the attenuation coefficients vary from 0.06 to 4.3 db/kHz-m. It seems that P velocities is inversely proportional to the attenuation coefficients of the rocks. Average travel-time delays of the broad-band stations seem to be related with the measured P velocities in the laboratory.

  • PDF

Logging for a Stone Column Using Crosshole Seismic Testing (크로스홀 탄성파 시험을 이용한 쇄석말뚝의 검측)

  • Kim, Hak-Sung;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2010
  • An integrity testing for stone columns was attempted using crosshole S-wave logging. The method is conceptionally quite similar to the crosshole sonic logging (CSL) for drilled piers. The critical difference in the logging is the use of S-wave rather than P-wave, which is used in CSL, because swave is the only wave sensing the stiffness of slower unbounded materials than water. An electro-mechanical source, which can generate reversed Swave signals, was utilized in the logging. The stone column was delineated using the S-wave travel times across the stone column, the S-wave velocity profile of the crushed stone($V_{cs}$-profile) and that of surrounding soil($V_s$-profile). In the calculation of $V_{cs}$-profile of the crushed stone, its friction angle and Ko (coefficient of lateral earth pressure at rest) are recommended to be used. The calculation of the column diameter is not much affected by the values of friction angle and Ko.

Difficulties in P and S wave velocity logging (속도검층에서 난제들)

  • Jo, Churl-Hyun;Byun, Joong-Moo;Hwang, Se-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.43-54
    • /
    • 2005
  • Care should be taken when performing the P and S wave velocity loggings. Some of them are the effect of casing that is installed to prevent the borehole collapsing when the drilling is done on the loose ground such as soil and/or soft rock, and the discrepancy of the velocities of the same media according to the difference of the source wave frequency spectrum. To overcome these difficulties, the following suggestions are recommended; (1) try a careful drilling technique that can eliminate the necessity of the casing, and (2) apply the logging methods with the proper frequency spectrum that is appropriate to the object of the velocity logging.

  • PDF

Synthetic Seismograms of Non-geometric S* and P* Waves Using the Reflectivity Method (반사도 기법에 의한 비기하적 S* 및 P* 파의 합성 계산)

  • Hong, Dong Hee;Baag, Chang Eob
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.393-409
    • /
    • 1990
  • Synthetic seismograms and deduced characteristic properties of the non-geometrical $S^*$ and $P^*$ waves are presented. These waves are excited on the free surface or an interface between two different media by an inhomogeneous P wave from a point source nearby, and propagate as homogeneous waves in the media. Synthetic seismograms are computed using an extended reflectivity method designed for buried source and receiver. An efficient computational procedure for propagator matrices of layers is devised to reduce the computational time and the RAM memory size in the implementation of the reflectivity method. Radiation patterns are obtained from the particle motions of the four types of the "*" waves, i.e., the $S^*$ wave generated near the free surface, and the reflected $S^*$, transmitted $S^*$ and transmitted $P^*$ waves generated near an interface. Some patterns show polarity changes of displacements and others reveal monotonic or non-monotonic variation of amplitude depending on the velocity structure. The decaying trend of amplitude with increasing epicentral distance are also shown for the head wave type of the "*" waves.

  • PDF

Seismic Anisotropy Physical Modeling with Vertical Transversely Isotropic Media (VTI 매질의 탄성파 이방성 축소모형실험)

  • Ha, Young-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Although conventional seismic data processing is based on the assumption that the media are isotropic, the subsurface is often anisotropy in shale formation or carbonate with cracks and fractures. This paper presents the anisotropic parameter and seismic modeling in transversely isotropic media with a vertical symmetry axis using seismic physical modeling. The experiment was successfully carried out with VTI media, laminated bakelite material, using contact transducer of p and s-wave transmission. The variation of velocities with angle of incidence was clearly shown in anisotropic material. Comparing these velocities with the calculated phase velocities, the (P) and (S)-wave velocity observed in anisotropic material was a very good agreement with the calculated values. Anisotropic parameter ${\varepsilon}$, ${\delta}$, ${\gamma}$ was estimated by using Lame's constant calculated from the observed velocity. For the purpose of testing (S)-wave polarization, a birefringence experiment was carried out. The higher velocity was associated with the polarization parallel to the fracture, and the lower velocity was associated with the polarization perpendicular to the fracture.

Acquisition and Processing of Shallow Vector Seismic Data (천부 탄성파 벡터자료 획득 및 분석)

  • Hong, Myung-Ho;Kim, Ki-Young;Hwang, Yoon-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • Acquisition and processing of vector seismic waves were conducted through simultaneous generation of P, SH, and SV waves and receiving those waves using three-component geophones. Test data were received by 24 8-Hz geophones at an interval of 2 m along a 94-m profile. The data were recorded for 512 ms with sampling intervals of 0.2 ms. Raw data indicate that both reflected and refracted P waves are strongly recorded on the vertical component while SH waves are significant on the transverse horizontal component. On the inline horizontal component, both direct P and converted PS waves are recorded. First arrivals of P and SH waves were detected simultaneously on the vertical and transverse horizontal axes, respectively. The recorded vector data were separately inverted using traveltime tomography to yield P- and SH-wave sections. Using those two velocity sections, Poisson's ratios were able to be obtained effectively.

  • PDF