• Title/Summary/Keyword: P(3HB-co-4HB)

Search Result 34, Processing Time 0.035 seconds

Preparation and Characterization of Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Microsphere (Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 미립구의 제조 및 특성화)

  • Kang, Hye-Su;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.146-150
    • /
    • 2007
  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] microspheres were prepared using solvent evaporation technique. P(3HB-co-4HB) with 3.9 mol% 4HB was synthesized by fed-batch culture of Ralstonia eutropha. The effects of concentration and type of surfactant (Tween 80, sodium dodecylsulfate, and polyvinyl alcohol), addition of dispersion stabilizer (Acacia), concentration of polymer and model drug (bovine serum albumin) on particle size of the microspheres and their in vitro drug release characteristics were investigated. The average particle size of the microspheres decreased with the addition of dispersion stabilizer and increased with the concentration of surfactant, drug and polymer. Amount of drug release increased with decreasing particle size of the microspheres.

Synthesis of Copolymeric PHA by Hydrogenophaga pseudoflava and Ralstonia eutropha H16 from Vari-ous Lactones and Their Microstructural Studies (락톤류로부터 Hydrogenophaga pseudoflava와 Ralstonia eutropha H16 두 세균에 의한 공중합 PHA의 합성 및 미세구조적 특성 연구)

  • Jang, Young-Ok;Nam, Won;Choi, Mun-Hwan;Song, Jae-Jun;Yoon, Sung-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2000
  • Two typess of copolyesters, poly(3-hydroxybutyric acid-co-4-hydroxy-butyric acid)[P(3HB-co-4HB] and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)[P(3HB-co-3HV)], with various monomer ratios and different degree of microstructural heterogeneity were synthesized from Ralstonia eutropha H16 and Hydrogenophaga pseudoflava by using ${\gamma}$-butyrolactone and ${\gamma}$-valerolactone, respectively. The two bacteria showed a large difference in the utilization of ${\gamma}$-butyrolactone for cell growth and PHA synthesis. H. pseudoflava synthesized P(3HB-co-4HB) copolyesters with a wide range of 4HB content from 13 to 96 mol% depending on culture conditions, whiel R. eutropha H16 was able to synthesize the copolyesters containing less than 20 mol% of 4HB. An increase in the 4HB content in the P(3HB-co-4HB) copolyesters synthesized by H. pseud-oflava induced an lowering of their melting temperatures as well as their enthalpies of fusion. The increase in the 4HB content, however, increased the rate of degradation by an extracellular P(3HB) depolymerase. NMR spectros-copy and differential scanning calorimetry showed that the P(3HB-co-4HB) copolyesters from H. pseudoflava were generally microstructurally heterogeneous. The P(3HB-co-4HB) copolyesters) synthesized by R. eutropha H16 were rather random copolymers showing less microstructural heterogeneity than those synthesized by H. pseudoflava. The NMR D value analysis suggested that the monomer distribution of the P(3HB-co-3HV) copolymers from the two bacteria were relatively random.

  • PDF

재조합 대장균에 의한 유청으로부터 Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 합성

  • Kim, Beom-Su;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.321-324
    • /
    • 2001
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhyclroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from whey as the sale carbon source. With the pH-stat fed-batch culture of E. coli LS5218, 、 ,ve obtained a cell concentration, a P(3HB-co-3HV) concentration. a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4 wt%. and 6.26 mol%, respectively at 39 h.

  • PDF

Characteristics of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Production by Ralstonia eutropha NCIMB 11599 and ATCC 17699

  • Song, Jae-Yong;Kim, Beom-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.603-606
    • /
    • 2005
  • Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures of R. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the ${\gamma}-butyrolactone$ concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures of R. eutropha NCIMB 11599, glucose and ${\gamma}-butyrolactone$ were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104g/L, with glucose fed in the first step and constant feeding of ${\gamma}-butyrolactone$, at 6g/h, in the second, final cell concentration at 67h was 106g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7mol%. When the same feeding strategy was applied to the fedbatch culture of R. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and ${\gamma}-butyrolactone$ (1.5g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74h were 51g/L, 35% and 32 mol%, respectively. In summary, R. eutropha ATCC 17699 was better than R. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.

Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Butyric Acid and Valeric Acid by Azotobacter sp. (Azotobacter sp.에 의한 Butyric Acid와 Valeric Acid로부터 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)의 생산)

  • Song, Hee-Ju;Lee, Il-Seok;Bang, Won-Gi
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.92-100
    • /
    • 1996
  • For the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(3HB-co-3HV)) from butyric acid and valeric acid, 10 strains of bacteria capable of producing P(3HB-co-3HV) were isolated from soil. Among them, the strain HJ-067 showed the best ability of producing P(3HB-co-3HV), and was indentified as a Azotobacter sp. For the production of P(3HB-co-3HV), the optimum concentrations of butyric and valeric acid were 3.0g/l, respectively. The most effective nitrogen source was $(NH_4)_{2}SO_4$ at an optimum concentration of 0.75g/l, which was equivalent to 21.36 in C/N ratio. Deficiency of the cationic metal ions ($Zn^{2+},\;Co^{2+},\;Mn^{2+}$) in the proguction medium had stimulating effect on P(3HB-co-3HV) accumulation, especially in the manganese. deficient medium. The optimum temperature for P(3HB-co-3HV) production was 27$^{\circ}C$ and the optimum initial pH was 7.0. Under the optimum conditions, 1.82g/l of P(3HB-co-3HV) and 3.00g/l of dry biomass were produced after 36 hour cultivation, and the P(3HB-co-3HV) yield and HV% were 60.60% (w/w), 15.92%, respectively.

  • PDF

Production of Poly(3-hydroxybutyrate) by Cupriavidus necator at Various Concentrations of Carbon Dioxide (Cupriavidus necator를 이용한 Poly(3-hydroxybutyrate) 생산에 이산화탄소의 농도가 미치는 영향)

  • Park, Inseon;Jho, Eun Hea;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • Polyhydroxyalkanoates (PHAs) are synthesized by numerous bacteria as carbon and energy storage compounds and are raw materials for biocompatible plastics. In this paper, the effect of $CO_2$ concentrations on the growth of C. necator and the accumulation of Poly(3-hydroxybutyrate) (P(3HB)) are investigated by increasing the $CO_2$ concentration in the substrate gas mixture. During 6 d cultivation in a nitrogen-present mineral medium, the $CO_2$ concentration did not affect the growth of the cells, while the Poly(3- hydroxybutyrate) (P(3HB)) content decreased with increasing $CO_2$ concentrations from 1% to 20%. During 4 d cultivation in the nitrogen-limited medium, the P(3HB) accumulation was the greatest at 3% $CO_2$; however, the total amount of accumulated P(3HB) was the greatest at 1% $CO_2$, which decreased with increasing $CO_2$ concentrations. The results indicate that the gas mixture with 1% $CO_2$ is the most effective in both growing the cells and accumulating P(3HB) under our experimental conditions.

Characteristics of Cell Growth and Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Synthesis by Alcaligenes latus and Comamonas acidovorans (Alcaligenes latus와 Comamonas acidovorans의 균체성장 및 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 합성 특성)

  • Song Jae Yang;Kim Beam Soo
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.358-362
    • /
    • 2004
  • Characteristics of cell growth and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] synthesis was investigated through flask and batch cultures of Alcaligenes latus and Comamonas acidovorans. The specific growth rate of C. acidovorans increased with yeast extract concentration and decreased with 1,4-butanediol concentration. Optimum glucose concentration for growth of C. acidovorans was 20 g/L. In one-step flask cultures of C. acidovorans, final dry cell weight and PHA content decreased with the ratio of 1,4-butanediol to glucose, while the 4HB fraction in copolymers gradually increased to 100 $mol\%$ with an initial 1,4-butanediol concentration of 20 g/L as single carbon source. The specific growth rate of A. latus decreased with v-butyrolactone concentration and optimum sucrose concentration for growth was 10 g/L. In batch cultures of A. latus, 4HB fraction increased with initial v-butyrolactone concentration. P(3HB-co-4HB) with 19 $mol\%$ 4HB was obtained when the initial ratio of v-butyloractone (g/L) to sucrose (g/L) was 10 : 10.

Synthesis of Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] by Recombinant Escherichia coli from Whey (재조합 대장균에 의한 유청으로부터 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] 합성)

  • 김범수;이상엽
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.404-407
    • /
    • 2003
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhydroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV) from whey. The 3HV fraction could be increased by acetic acid induction and oleic acid supplementation in flask cultures of recombinant E. coli GCSC6576. With the pH-stat fed-batch culture of recombinant E. coli LS5218, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4%, and 6.26 mol%, respectively in 39 h.

Isolation of an Aromatic Polyhydroxyalkanoates-degrading Bacterium

  • JU, HE-SUG;JUNGHO KIM;HOON KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.540-542
    • /
    • 1998
  • Five microorganisms capable of degrading an aromatic medium-chain-length polyhydroxyalkanoate ($PHA_{MCL}$), poly(3-hydroxy-5-phenylvalerate) (PHPV), were isolated from wastewater-treatment sludge. Among the isolates, JS02 showed degrading activity consistantly during several transfers. The isolate JS02 could hydrolyze another aromatic MCL copolyester, poly(3-hydroxy-5-phenoxyvalerate-co-3-hydroxy-7-phenoxyheptanoate), [P(5POHV-co-7POHH)], and other short-chain-length PHAs ($PHA_{SCL}) such as poly(3-hydroxybutyrate) [P3(HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3 HB-co-4 HB)], and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with relatively low activity. The culture supernatant of JS02 showed hydrolyzing activity for the p-nitrophenyl esters of fatty acids.

  • PDF

Control of Enzymatic Degradability of Microbial Polyester by Surface Modification (표면 개질을 통한 미생물합성 폴리에스테르의 효소분해속도 조절)

  • 이원기
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1315-1320
    • /
    • 2002
  • Since the enzymatic degradation of microbial poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (P(3HB-co-3HV)) initially occurs by a surface erosion process, a degradation behavior could be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma gas discharge and blending techniques were used to modify the surface of microbial P(3HB-co-3HV). The surface hydrophobic property of P(3HB-co-3HV) film was introduced by CF$_3$H plasma exposure. Also, the addition of small amount of polystyrene as a non-degradable polymer with lower surface energy to P(3HB-co-3HV) has been studied. The enzymatic degradation was carried out at 37 $^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. Both results showed the significant retardation of enzymatic erosion due to the hydrophobicity and the enzyme inactivity of the fluorinated- and PS-enriched surface layers.