• Title/Summary/Keyword: P&O algorithm

Search Result 190, Processing Time 0.031 seconds

A study of Improved P&O MPPT Algorithm go with a Dynamic characteristic of Photovoltaic System (태양광 시스템의 동작특성에 따른 개선된 P&O MPPT 알고리즘 연구)

  • Lee, Seung-Hee;Jang, Ki-Young;Kim, Sang-Mo;Kim, Ki-Hyun;Yu, Gwon-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.107-110
    • /
    • 2009
  • The photovoltaic power system is effected by atmospheric condition. Therefore, The maximum power point tracking(MPPT) algorithm of the Photovoltaic (PV) power system is needed for high efficiency. Many MPPT techniques have been considered in past, but In this paper, the author analyzes widely known P&O MPPT algorithm and ImP&O algorithm, and presents new MPPT algorithm complementing weaknesses of other two algorithms.

  • PDF

Development of Improved P&O Algorithm of PV System Considering Insolation variation (일사량 변화를 고려한 PV 시스템의 개선된 P&O 알고리즘 개발)

  • Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Baek, Jeong-Woo;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe(P&O) method and constant voltage(CV) method. P&O method is simple to realize and CV method is possible to tracking MPP with low insolation. Response characteristics of proposed algorithm is compared to conventional P&O method with insolation variation. This paper proves the validity of proposed algorithm through the analysis result.

  • PDF

A Study on Developing an Efficient Algorithm for the p-median Problem on a Tree Network (트리 네트워크 상에서의 p-미디안 문제에 대한 효율적인 알고리즘 개발에 관한 연구)

  • Cho, Geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.57-70
    • /
    • 2004
  • Given a tree network on which each node has its own demand and also stands for a candidate location of a potential facility. such as plant or warehouse, the f-median problem on the network (PMPOT) is to select less than or equal to P number of facility locations so that the whole demand on a node is satisfied from only one facility and the total demand occurred on the network can be satisfied from those facilities with the minimum total cost, where the total cost Is the sum of transportation costs and the fixed costs of establishing facilities. Tamir(1996) developed an O(p n$^2$) algorithm for PMPOT which is known to be the best algorithm In terms of the time complexity, where n is the number of nodes in the network, but he didn't make any comments or explanation about implementation details for finding the optimal solution. In contrast to Tamir's work, Kariv and Hakimi(1979) developed O(p$^2$n$^2$) algorithm for PMPOT and presented O(n$^2$) algorithm for finding the optimal solution in detail. In this paper, we not only develop another O(p n$^2$) dynamic programming algorithm for PMPOT that is competitive to Tamir's algorithm in terms of the time complexity, but also present O(n) algorithm that is more efficient than kariv and Hakimi's algorithm in finding the optimal solution. finally, we implement our algorithm on a set of randomly generated problems and report the computational results.

A New MPPT Algorithm based on P&O Algorithm (P&O 알고리즘을 개선한 새로운 MPPT 알고리즘)

  • Jung Y.S.;Yu G.J.;So J.H.;Choi J.Y.;Choi J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.925-928
    • /
    • 2003
  • As the maximum power operating point(MPOP) of photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF

A Novel Maximum Power Point Tracking Control Algorithm for Photovoltaic System (태양광 발전 시스템을 위한 새로운 최대 출력점 추종 제어 알고리즘)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun;Park, Seung-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.133-141
    • /
    • 2002
  • Most maximum power point tracking(MPPT) control algorithm is based on Perturb and Observe(P&O) and Incremental Conductance(IncCond). In comparison with P&O and IncCond algorithm, the dynamic and tracking characteristic of IncCond algorithm is better than P&O algorithm in condition of rapidly changing solar radiation. But in the case of digital implementation, the InCond algorithm has error en decision of maximum power operation point(MPOP). To solve this problem, this paper proposes a improved IncCond algorithm, which can determine the MPOP correctly by inserting the test signal in control input. This paper proposes a novel MPPT control algorithm for the digitally implemented photovoltaic system in condition of rapidly changing solar radiation. To verify the validity of the proposed control algorithm. the computer simulation and experiment are carried out.

A Sclable Parallel Labeling Algorithm on Mesh Connected SIMD Computers (메쉬 구조형 SIMD 컴퓨터 상에서 신축적인 병렬 레이블링 알고리즘)

  • 박은진;이갑섭성효경최흥문
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.731-734
    • /
    • 1998
  • A scalable parallel algorithm is proposed for efficient image component labeling with local operatos on a mesh connected SIMD computer. In contrast to the conventional parallel labeling algorithms, where a single pixel is assigned to each PE, the algorithm presented here is scalable and can assign m$\times$m pixel set to each PE according to the input image size. The assigned pixel set is converted to a single pixel that has representative value, and the amount of the required memory and processing time can be highly reduced. For N$\times$N image, if m$\times$m pixel set is assigned to each PE of P$\times$P mesh, where P=N/m, the time complexity due to the communication of each PE and the computation complexity are reduced to O(PlogP) bit operations and O(P) bit operations, respectively, which is 1/m of each of the conventional method. This method also diminishes the amount of memory in each PE to O(P), and can decrease the number of PE to O(P2) =Θ(N2/m2) as compared to O(N2) of conventional method. Because the proposed parallel labeling algorithm is scalable, we can adapt to the increase of image size without the hardware change of the given mesh connected SIMD computer.

  • PDF

Minimizing the Diameter by Augmenting an Edge to a Path in a Metric Space (거리공간속 경로 그래프에 간선추가를 통한 지름의 최소화)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.128-133
    • /
    • 2022
  • This paper deals with the graph in which the weights of edges are given the distances between two end vertices on a metric space. In particular, we will study about a path P with n vertices for these graphs. We obtain a new graph $\bar{P}$ by augmenting an edge to P. Then the length of the shortest path between two vertices on $\bar{P}$ is considered and we focus on the maximum of these lengths. This maximum is called the diameter of the graph $\bar{P}$. We wish to find the augmented edge to minimize the diameter of $\bar{P}$. Especially, for an arbitrary real number λ > 0, we should determine whether the diameter of $\bar{P}$ is less than or equal to λ and we propose an O(n)-time algorithm for this problem, which improves on the time complexity O(nlogn) previously known. Using this decision algorithm, for the length D of P, we provide an O(nlogD)-time algorithm to find the minimum of the diameter of $\bar{P}$.

A Marriage Problem Algorithm Based on Duplicated Sum of Inter-Preference Moving Method (중복된 최소 상호-호감도 합 이동방법을 적용한 결혼문제 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • This paper proposes a simplified algorithm devised to obtain optimal solution to the marriage problem. In solving this problem, the most widely resorted to is the Gale-Shapley algorithm with the time complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$. The proposed algorithm on the other hand firstly constructs a $p_{ij}$ matrix of inter-preference sum both sexes' preference over the opposite sex. Secondly, it selects $_{min}p_i$ from each row to establish ${\mid}p_{.j}{\mid}{\geq}2,j{\in}S$, ${\mid}p_{.j}{\mid}=1$, $j{\in}H$, ${\mid}p_{.j}{\mid}=0$, $j{\in}T$. Finally, it shifts $_{min}\{_{min}p_{ST},p_{SH}+p_{HT\}$ for $_{min}P_{ST}$ of $S{\rightarrow}T$ and $p_{SH}+p_{HT}$, $p_{HT}<_{min}p_{ST}$ of $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm has not only improved the Gale-Shapley's algorithm's complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$ to $O({\mid}V{\mid}^2)$ but also proved its extendable use on unbalanced marriage problems.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.