• 제목/요약/키워드: Ozone oxidation

검색결과 306건 처리시간 0.025초

정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가 (Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds)

  • 손희종;정종문;최진택;손형식;장성호
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

2-Methylisoborneol(2-MIB)제거를 위한 산화 및 흡착공정의 특성 (The Characteristics of Oxidation and Adsorption Processes for 2-Methylisoborneol(2-MIB) Removing)

  • 최근주;김상구;류동춘;신판세;손인식;오광중
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.241-246
    • /
    • 2002
  • One of the Musty and earthy smell compounds in raw water is generally attributed to 2-methylisoborneol (2-MIB). It is well known that activated carbon and oxidants such as $O_3$, Cl $O_2$, are effective ways to control 2-MIB. In isotherm equilibrium experiments, 2-MIB in distilled water was much more adsorbed to the activated carbon(A/C) than raw water containing dissolved organic carbon (DOC). The Freundlich constants(k) of distilled water and raw water were 3.36 and 0.049, and 1/n values were 0.80 and 0.42, respectively. The 2-MIB residual rate were Y = $e^{-0}$.55x/~ $e^{-0}$.54x/ with Ozone( $O_3$) dose by 5 minutes contact time at the 241 and 353 ng/L initial concentrations. The 2-MIB residual rate were Y = $e^{-0}$.32x/~ $e^{-0}$.35x/ with Chlorine dioxide(Cl $O_2$) dose by 15 minutes contact time at the 89 and 249 ng/L initial concentrations. 2-MIB was decreased from 1911 ng/L to 569ng/L by post-ozonation(70%removal efficiency) and removal efficiencies of 2-MIB by the following 4 kinds Granular Activated Carbon(GAC) process such as coal base, coconut base, wood base and zeolite+carbon base were 95.8, 89.5, 88.4, and 93.7% respectively.ely.

H2O2와 O3/UV를 이용한 페놀용액의 처리 (Treatment of Aqueous Phenol by H2O2 and O3/UV)

  • 신진환;정영도;연익준
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.251-255
    • /
    • 2004
  • Laboratory experiments were performed to investigate oxidation system using ozone and hydrogen peroxide for treating water contaminated with phenol. We were able to greatly improve the oxidation efficiency of the aqueous phenol using hydrogen peroxide and ozone. Two methods were compared and analyzed in this study. In the consequence through the methods, we concluded that the $O_3/UV$ is superior to the hydrogen the results. The decomposition efficiency of aqueous phenol by $H_2O_2$. was exceeded at 83.3% in the concentration of phenol, 5, 15, 25 ppm, respectively. The rate of decomposition reaction by $H_2O_2$. was very slow. In the occasion of the fractional life, it was determined the value that $1.61{\times}10^{-5}(l/mol)^{1.172}sec^{-1}$, $3.75{\times}10^{-5}(l/mol)^{0.792}sec^{-1}$, $4.11{\times}10^{-5}(l/mol)^{1.782}sec^{-1}$. The rate of decomposition reaction of aqueous phenol by $O_3$ was fast compared to the $H_2O_2$. We concluded that the $O_3$ method is useful with the consideration of the reaction time 30 minutes. In the occasion of the fractional life, it was determined the value that $1.094{\times}10^{-4}(l/mol)^{0.933}sec^{-1}$, $2.1{\times}10^{-4}(l/mol)^{0.842}sec^{-1}$, $7.22{\times}10^{-4}(l/mol)^{1.332}sec^{-1}$.

Ozone에 의한 PAHs 오염토양 복원 연구(I): 토양슬러리상 오존 산화 (Ozone Oxidation of PAHs in the Presence of Soil (I): Ozonation of Soil Slurry Phase)

  • 임형남;김지연;최희철
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.869-877
    • /
    • 2000
  • Phenanthrene과 benzo[a]pyrene으로 오염된 토양을 슬러리상에서 오존처리시 반응메커니즘을 조사하였다. 토양내 오존주입시 OH-radical의 생성과 반응에 있어서 유 무기물의 영향을 알아보기 위하여 단순화된 토양매질로써 baked sand(BS), sand(S), glass beads(GB)를 택하여 실험한 결과 제거속도가 BS>S>GB 순으로 나타났다. Radical scavenger 실험을 통하여 OH-radical의 발생경향을 살펴보았는데, BS의 경우 OH-radical의 생성으로 오존과의 직접반응과 더불어 제거효율이 22% 상승됨을 알 수 있었다. Humic acid의 초기농도를 0~5 ppm으로 증가시킴에 따라 반응속도상수(psuedo first-order rate constant: $k_o$)가 $1.37{\times}10^{-2}s^{-1}$에서 $0.53{\times}10^{-2}s^{-1}$으로 감소하였으며, S매질상에서 PAHs의 초기농도 10mg-PAHs/kg-soil의 80%를 제거하는데 소모되는 오존 주입량은 phenanthrene의 경우 $67.2mg-O_3/kg-soil$였고, benzo[a]pyrene의 경우 $48.0mg-O_3/kg-soil$로 산정되었다.

  • PDF

과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구 (Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate)

  • 하준수;허다니엘상두;임채언;정동희;임영성;주진경
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

Ultraviolet-ozone irradiation of HPMC thin films: Structural and thermal properties

  • Abdel-Zaher, Nabawia A.;Moselhey, Manal T.H.;Guirguis, Osiris W.
    • Advances in materials Research
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2017
  • The aim of the work was to evaluate the effect of ultraviolet-ozone ($UV-O_3$) irradiation with different times on the structure and thermal properties of hydroxypropyl methylcellulose (HPMC) in the form of a thin film to be used as bioequivalent materials according to their important broad practical and medical applications. HPMC thin films were exposed to $UV-O_3$ radiation in air at a wavelength of 184.9 nm.The beneficial effects of this treatment on the crystallinity and amorphousity regions were followed by X-ray diffraction technique and FTIR spectroscopy. Differential scanning calorimetry, thermogravimetric and differntial thermal analyses were used in order to study the thermal properties of HPMC samples following the process of photodegradation. The obtained results indicated that the rate of degradation process was increased with increasing the exposure time. Variations in shape and area of the thermal peaks were observed which may be attributed to the different degrees of crystallinity after exposing the treated HPMC samples. This meant a change in the amorphousity of the treated samples, the oxidation of its chemical linkages on its surface and its bulk, and the formation of free radical species as well as bond formation.

자외선/오존 조사에 의한 Poly(vinyl butyral)의 광산화 (Photooxidation of Poly(vinyl butyral) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.113-118
    • /
    • 2015
  • Poly(vinyl butyral), PVB was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PVB film were investigated by the measurement of reflectance, surface roughness, contact angles, elemental composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 400nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 274nm for the unirradiated PVB to 370nm at the UV energy of $5.3J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C=O bonds. The surface energy of the PVB film increased from $35.3mJ/m^2$ to $39.3mJ/m^2$ at the irradiation of $15.9J/cm^2$. While the zeta potentials decreased proportionally with increasing UV energy, the cationic dyeability of the PVB increased accordingly resulting from the improved affinity of the irradiated PVB surfaces containing the photochemically introduced anionic and dipolar dyeing sites.

AOPWIN을 이용한 Acetanilide의 광부해 특성 평가 (Estimated Photodegradation Properties of Acetanilide Using AOPWIN)

  • 권민정;최윤호;송상환;박혜연;구현주;전성환;나진균;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권3호
    • /
    • pp.139-142
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes, and the chemical is one of seven chemicals of which human and environmental risk are being assessed by National Institute of Environmental Research under the frame of OECD SIDS program. The Atmospheric Oxidation Program for Microsoft Windows (AOPWIN) is used to estimates the rate constant for the atmospheric, gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals. It is also used to estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program are then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN requires only a chemical structure to make these predictions. Structures are entered into AOPWIN by SMILES (Simplified Molecular Input Line Entry System) notations. In this study, one of environmental fate/distribution of the chemical elements, photodegradation of acetanilide was estimated using AOPWIN model based on SMILES notation and chemical name data.

  • PDF

정수처리를 위한 전오존-세라믹 막여과 조합공정에 관한 연구(I) : 망간 제거 중심 (Study of a hybrid process combining ozonation and ceramic membrane for drinking water treatment (I) : manganese removal)

  • 진광호;임재림;이경혁;왕창근
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.633-640
    • /
    • 2008
  • In this research, the $3.6m^3/day$ scale pilot plant consisting preozonation, coagulation, flocculation, and ceramic membrane processes was operated for long term period to evaluate the validity of ceramic membrane filtration process for treating lake water containing high concentration manganese. The higher concentration of dissolved manganese($Mn^{2+}$) was effectively oxidized to the bigger insoluble colloidal manganese ($MnO^2$) by 1~2 mg/L ozone. The colloidal manganese reacted with coagulant (poly aluminium chloride, PAC) and then formed the big floc. Ceramic membrane rejected effectively manganese floc during membrane filtration. Dissolved organic carbon(DOC) removal was dependent upon $Mn^{2+}$ concentration. While average $Mn^{2+}$ concentration was 0.43 and 0.85 mg/L in raw water, DOC removal rate in preozonation was 26.5 and 13.5%, respectively. The decrease rate of membrane permeability was faster without preozonation than with preozonation while membrane fouling decreased with NOM oxidation by ozone. In conclusion, raw water containing high concentration of manganese can be effectively treated in preozonation-coagulation-ceramic membrane filtration system.

자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화 (Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.