• Title/Summary/Keyword: Ozone Lamp

Search Result 45, Processing Time 0.023 seconds

Characteristics of Fluorescent Discharge Lamp Type Ozonizer for Environment Improvement (환경개선을 위한 형광방전등형 오존발생기의 특성)

  • Park, Yong-Gwon;Lee, Sang-Geun;Jeon, Byeong-Jun;Song, Hyeon-Jik;Lee, Gwang-Sik;Ha, Jang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.500-505
    • /
    • 2002
  • In this paper, fluorescent discharge type ozonizer has been designed and manufactured. Ozone discharge and generation characteristics have been investigated in accordance with a sort of internal electrodes, output voltage of power supply, air flow rate and discharge power. Air has been used as the supplied gas of the ozonizer In this paper, when disuse fluorescent lamp was used as an internal electrode. Air flow rate was varied from 2[1/min] to 10[1/min]. The maximum ozone concentration and yield were 3495[ppm] and 23.4[g/kWh] respectively at 2[1/min] air flow rate and 35.2[W] input power. Illumination was appeared as 5[lx] within 15[cm] from external electrode. Whorl fluorescent discharge type ozonizer was used, air flow rate was also varied from 2[1/min] to 10[1/min]. At this moment, the maximum ozone concentration and yield were 2824[ppm] and 21.7[g/kWh] respectively at 2[1/min] air flow rate and 30.5[W] input power. Illumination was also appeared as 5[lx] within 15[cm] from external electrode like used fluorescent lamp.

A clean technology development using the molybdenum dissolution reaction with hydrogen peroxide/UV/Ozone ($오존/UV/H_2O_2$를 이용한 몰리브덴(Mo) 용해 반응에 따른 청정기술 개발에 관한 연구)

  • 김재우;홍종순;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.143-149
    • /
    • 1999
  • In the tungsten industry as light source material, tungsten filament which used as light source material could form after molybdenumwire which used as the center supporter for coil shape tungsten wire was removed. This process uses hydrogen peroxide, Ozone and UV(Ultraviolet)Lamp, for the quantity of hydrogen peroxide decrease. The results were as follows : 1. An incandescent electric Lamp type : FL(FL-20) type : A standard of commodity (P.W.: $19{\pm}1.0mg$, $C.R:4.5{\pm}0.3{\Omega}$) 1) Only hydrogen peroxide treated ; Reaction Time : 65Min., P.W.: 18.60mg, $C.R.:4.60{\Omega}$ 2) Ozone/Ultraviolet/70% of hydrogen peroxide; Reaction Time : 64Min., P.W.: 18.61mg, C.R.: $4.61{\Omega}$ 2. A Fluorescent Lamp Type : GLS(GLS-40) Type : A standard of commodity(P.W.: $11.8{\pm}0.2mg$$65{\pm}1.5{\Omega}$) 1) Only hydrogen peroxide treated ; Reaction Time: 72Min, P.W.:11.88mg, C.R.: $65.62\Omega$ 2) Ozone/Ultraviolet/70% of hydrogen peroxide;Reaction Time:71Min., P.W.:11.88mg, C.R.: $65.63\Omega$

  • PDF

A New Small Size Digital Optical Ozone Monitor Using CCD Array as a UV Detector (UV 감지기로서 CCD어레이를 사용한 소형 디지털 광 오존모니터)

  • Chung, Wan-Young;Lee, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.158-163
    • /
    • 2008
  • Ozone monitor based on UV techniques has been widely used due to their signal stability. The high concentration ozone monitor for real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source and a photo multiplier tube as UV detector. The structure could be very useful for low price high concentration ozone monitor and showed good linearity to ozone in the concentration range between 0.05 and 2wt%. For accurate ambient ozone monitoring, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector. The optical signal form the CCD array was converted to digital signal, and the digital signal was displayed on screen using PC interface. The developed system showed good linearity and sensitivity in relatively low measuring range between 10ppm and 10,000ppm, and showed some feasibility of hish resolution ozone monitor using CCD array as a photodetecor.

Development of Ozone Generation Technology Using Gaseous Electrical Discharge for Environment Improvement (환경개선용 기체전기방전을 이용한 오존발생기술 개발)

  • 이동헌;송현직;구건효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.25-34
    • /
    • 2001
  • In this paper, discharge lamp ozonizer(DLO) of a new discharge type using superposition of gaseous electrical discharge for environment improvement was designed and manufactured. DLO is equipped with 3 electrodes(central ground electrode of discharge lamp type internal high voltage electrode of mesh type and external high voltage electrode of spiral type), and it is composed of double gap(gap between discharge lamp and internal electrode, gap between discharge lamp and external electrode). Internal and external electrodes are respectively applied AC high voltage which has 180[$^{\circ}$] phase difference. Ozone is generated by overlaying of each silent discharge which is respectively came from two gaps. At the moment discharge characteristics and ozone generation characteristics of DLO were investigated in accordance with quantity of supplied gas, discharge power and the number of DLO. When ozone generated by DLO was in contact with NO gas, removal characteristics was excellent, so it confirmed that DLO could be used as air environment improvement facility.

  • PDF

Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst (상업용 오존촉매와 광촉매를 이용한 오존제거특성)

  • Byeon, Jeong-Hoon;Park, Jae-Hong;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF

The characteristics study of discharge lamp type ozonizer using pulse power source (펄스 전원을 활용한 방전관형 오존발생기의 특성 연구)

  • Song, Hyun-Jig;Kim, Min-Huei;Park, Chan-Gyu;Cho, Kyu-Pan;Yoon, Dae-Hee;Jee, Seung-Wook
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.350-352
    • /
    • 2007
  • This paper describes the discharge and ozone generation characteristics with variation of the applied voltage, the number of ozonizer, the quantity of flowing material gas. The important conclusions are as follows. The discharge voltage and current values are proportional to the applied voltage. The ozone concentration and generation are proportional to the applied voltage and the number of ozonizer. As the maximum value of ozone concentration and generation of silent discharge type ozonizer using discharge lamp can be obtained 890[ppm] and 59.7[mg/h] respectively.

  • PDF

Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(I) (전기분해와 UV 조사에 의한 수중의 Rhodamine B의 제거(I))

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • The feasibility study for the application of the removal and mineralization of Rhodamine B (RhB) was performed in a batch electrochemical reactor. The electro/UV process was consisted of DSA (dimensionally stable anode) electrode and UV-C or ozone lamp. The experimental results showed that RhB removal by the ozone lamp was higher than that of the UV-C lamp. Optimum current of the electro/UV process was 1 A. The electrochemical, UV and electro/UV process could completely degrade RhB, while a prolonged treatment was necessary to reach a high level RhB mineralization. It was observed that RhB removal in electro/UV process is similar to the sum of the UV and electrolytic decolorization. However, it was found that the COD of RhB could be degraded more efficiently by the electro/UV process (90.2 %) than the sum of the two individual oxidation processes [UV (19.7%) and electrolytic process (50.8%)]. A synergetic effect was demonstrated between the UV and electrolysis.

The Study of VOCs Decomposition Characteristics Using UV Photolysis Process (휘발성유기화합물의 광분해 제거 특성에 관한 연구)

  • 서정민;정창훈
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.743-748
    • /
    • 2002
  • UV photolysis process is little known in parts of air pollution treatment, so there are not many applications in field. Therefore we have to do more experiment and study application possibility for treatment of VOCs(Volatile organic compounds). To solve these problems, we have been studying for simultaneous application of this technology. It has shown that concentration of TCE and B.T.X., diameter of reactor and wavelength of lamp have effected on decomposition efficiency. Analysis of TCE and B.T.X. concentration was carried out by GC-FID. A cylinderical reactor consisting of a quartz tube and a centrally located lamp(${\psi}25mm$) was used. The length and diameter of reactor were 1800mm, 75mm. It has shown that the generated ozone concentration goes up 250ppm when using 64watt ozone lamp. When using Photolysis process only, the rates of fractional conversion of each material are TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. This phenomenon can be rationalized in terms of the different bond energy that indicates how easily VOCs species can be decomposed.

Optical Fiber Atmospheric Ozone Monitor (광섬유 대기오존 모니터)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.201-204
    • /
    • 2002
  • A high accuracy ozone monitor using UV absorption method was developed for ambient ozone monitoring. The system was mainly composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit. The optical signal from the CCD array that provides unusually high response and excellent optical resolution for ozone concentration was converted to digital signal and the digital signal was displayed on screen using PC interface. The optical signal was propagated using optic fiber to reduce optical loss to increase the accuracy of the measuring system. This paper has been studied a interworking signalling protocol between two hybrid networks by analyzing Satellite B-ISDN architecture, DSS2 Layer 3 Signalling protocol, B-ISUP protocol, S-BISUP protocol stack and so on. Also in the paper, messages and primitives have been defined for B-ISDN's Connection Type, Ownership and each protocol in order to connect point-to-multipoint. The ozone sensing properties of the CCD ozone monitor was compared with those of the photo multiplier ozone monitor.

  • PDF

Characteristics of Ozonizers Manufactured in Energy & Environment Electromagnetic Lab. of Yeungnam University

  • Song, Hyun-Jig;Kim, Ki-Chai;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.11-16
    • /
    • 1999
  • Discharge characteristics research for high voltage and large current electric machinery design, the development of ozonizer with high yield and efficiency for environment improvement, generation of plasma & laser and EMI EMC are research fields of Enersy & Environment Electromagnetic Laboratory(EEEL) in the school of electrical & electronic engineering of Yeungnam University. On this paper, we would like to introduce the discharge and ozone generation characteristics of ozonizers designed and manufactured by EEEL. After starting research for fluid gas discharge characteristics early in the 1980's, high voltage nozzle(HVN) type ozonizer, neon lamp(Nelamp) type ozonizer, ozone lamp(Olamp) type ozonizer and multi-discharge type ozonizer(MDO) have been investigated since 1990.

  • PDF