• Title/Summary/Keyword: Oyster shell white

Search Result 17, Processing Time 0.031 seconds

Characterizations of Shell and Mantle Edge Pigmentation of a Pacific Oyster, Crassostrea gigas, in Korean Peninsula

  • Kang, Jung-Ha;Kang, Hyun-Sook;Lee, Jung-Mee;An, Chel-Min;Kim, Sung-Youn;Lee, Yun-Mi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1659-1664
    • /
    • 2013
  • The objectives of this study were to investigate color patterns of shell and mantle edge pigmentation of a Pacific oyster, C. gigas, and to estimate variance components of the two colors. A sample of 240 F0 oysters was collected from six aquaculture farms in Tongyeong, Korea to measure shell color and mantle edge pigmentation. Among the F0s, male and female individuals with black (white) shell and black (white) mantle edge were selected and mated to generate three F1 full-sib black (white) cross families (N = 265). Two and four F2 cross families (N = 286) were also produced from black and white F1 selected individuals, respectively. Variance component estimates due to residuals and families within color were obtained using SAS PROC VARCOMP procedures to estimate heritability of shell and mantle edge pigmentation. In the F0 generation, about 29% (11%) had black (white) color for both shell and mantle edge. However, in the F1 and F2 black (white) cross families, 75% (67%) and 100% (100%) of oysters had black (white) shell colors, and 59% (23%) and 79% (55%) had black (white) mantle edge, respectively. Spearman correlation coefficients between shell and mantle edge color were 0.25, 0.74, and 0.92 in F0, F1, and F2 generations, respectively, indicating that, with generations of selection process, an individual with black (white) shell color is more likely to have black (white) mantle edge pigmentation. This suggests that shell color could be a good indicator trait for mantle edge pigmentation if selection of both the colors is implemented for a couple of generations. Estimates of heritability were 0.41 and 0.77 for shell color and 0.27 and 0.08 for mantle edge pigmentation in the F1 and F2 generations, respectively, indicating that, in general, significant proportions of phenotypic variations for the shell and mantle edge colors are explained by genetic variations between individuals. These results suggest that the two color traits are inheritable and correlated, enabling effective selection on shell and mantle edge color.

Investigation of the Korean Traditional Hobun Manufacturing Technique - Centering on Weathering Method - (전통 호분 제조기술 연구 - 풍화방법을 중심으로 -)

  • Kim, Soon-Kwan;Lee, Han-Hyoung;Kim, Ho-Jeong;Jeong, Hye-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.199-220
    • /
    • 2008
  • Hobun(Oyster shell White) is a traditional material used as extender and white pigment from ancient times. The production method of it, however, has been discontinued. We have studied the traditional production method of Hobun by weathering oyster shell, which is one of the traditional ways for preparing Hobun. Reproduction study of manufacturing method of the discontinued traditional material is an important accomplishment of our research. Also this study provides solid background knowledge to stabilize the production and supply of Hobun for the cultural asset repairing materials. The result can be summarized as follows: The production process of Hobun by weathering method takes 5 steps - (1) weathering shells ${\rightarrow}$ (2) washing ${\rightarrow}$ (3) pulverization ${\rightarrow}$ (4) separating fine powder by submerging in water ${\rightarrow}$ (5) drying. The major aim in step (1) is to eliminate organic impurities. In the step (4), the fine particles smaller than $25{\mu}m$ are separated by extracting the supernatant from stirred suspension after heavy particles are submerged. Also, the soluble inorganic impurities can be eliminated through the powder submerge in 15 times water and stirring the suspension 6 hours and changing the water 3~4 times. The final products have high quality with 94.03, 0.52, 2.05 for L, a, b, less than $25{\mu}m$ particle size, fine resistance for discoloration by light and environmental pollution and good workability.

  • PDF

Investigation of the Korean Traditional Hobun(Oyster shell W.) Manufacturing Technique : Centering on Calcination Method (전통 호분(합분) 제조기술 연구 : 소성방법을 중심으로)

  • Lee, Han-Hyoung;Kim, Soon-Kwan;Kim, Ho-Jeong;Jeong, Hye-Young
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.103-118
    • /
    • 2008
  • Hobun(Oyster shell W.) is a traditional material used as extender and white pigment from ancient times. The production method of it, however, has been discontinued. We have studied the traditional production method of Hobun through calcination of oyster shell, which is one of the traditional ways for preparing Hobun. Our work has the important meaning in that we can reproduce the manufacturing method of the discontinued traditional material and also it provides a solid background knowledge to stabilize the production and supply of Hobun for the cultural asset repairing materials. The result can be summarized as followings: The production processes of Hobun by calcination method are divided into 4 steps - calcination ${\rightarrow}$ slaking(pulverization) ${\rightarrow}$ separating fine powder by submergence in water ${\rightarrow}$ drying. In calcination step, the temperature is required to exceed $700^{\circ}$ to get pure white color of Hobun, since organic materials in the shell cause the final powder to be less white below $600^{\circ}$. And the calcination methods produce significant amount of calcium hydroxide, which is incongruent for pigment materials without additional treatments. The experimental study also demonstrated that the additional treatment process introduced in traditional paintings can be a probable process since the calcium of potassium hydroxide is observed to be promoted by this treatment. It is also concluded that, the calcination method of Hobun is appropriate for a small amount and high quality production.

  • PDF

Manufacture of Sterilizing Media with Shell Powder and It's Application to the Filter of Water Clarifier (패각분말을 이용한 살균성 메디아의 제조 및 정수기용 필터에 대한 응용)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1027-1034
    • /
    • 2006
  • Antimicrobial powder was made by exchanging silver ion on calcined oyster shell. On the purpose of application to water clarifier, bail-type media mixed with antimicrobial powder and $0{\sim}30%$ white kaoline were made. The sterilization effect, pore size distribution and zeta potential was tested to indicate the condition for the media of water clarifier. From these tests, it was confirmed that this media have an excellent sterilization power on $G^-\;and\;G^+$ germs. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the media also increased. The surface pore size decreased with the concentration of silver ion and 20% more white kaoline ratio. Consequently, mixing ratio of white kaoline would appear to indicate the optimun condition as media have sterilization power.

Characteristics of Painting Film Corresponding with Particle Distribution of Oyster Shell Powders (굴 패각 분말의 입자분포에 따른 도막특성)

  • Song, You Na;Park, Ga Yeong;Lee, Han Hyoung;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.261-271
    • /
    • 2016
  • We have investigated relationship between particle characteristics of oyster shell powder pigments and their performance such as workability and durability. Three types of the powder which have different particle size and shape(spherical, elliptical, columnar and irregular) distributions were made for this study and we evaluated spreadability and uniformity for workability, and adhesion and surface hardness for durability of painted films by each powder paints. As a result, we found out that the workability and durability of the paints were influenced by the particle shape distribution more than the particle size distribution. The durability, especially, was enhanced as the ratio of columnar particles in the powders was increased. This result verifying the important factor affecting the durability can be base data for selecting oyster shell white paint and assessing its quality for conservation and restoration of Dancheong, as well as to produce high quality traditional paints.

Effects of Calcium Powder Mixtures and Binding Ingredients as Substitutes for Synthetic Phosphate on the Quality Properties of Ground Pork Products

  • Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1179-1188
    • /
    • 2018
  • This study aimed to investigate the combined effect of using natural calcium mixtures and various binding ingredients as replacers for synthetic phosphate in ground pork products. We performed seven treatments: control (0.3% phosphate blend), treatment 1 (0.5% natural calcium mixtures [NCM, which comprised 0.2% oyster shell calcium and 0.3% egg shell calcium powder] and 0.25% egg white powder), treatment 2 (0.5% NCM and 0.25% whey protein concentrate), treatment 3 (0.5% NCM and 0.25% concentrated soybean protein), treatment 4 (0.5% NCM and 0.25% isolated soybean protein), treatment 5 (0.5% NCM and 0.25% carrageenan), and treatment 6 (0.5% NCM and 0.25% collagen powder). All the treatment mixtures had higher pH and lower cooking loss than the control, which was treated with phosphate. We found that NCM and binding ingredients had no negative effects on the moisture content, lightness, and yellowness of the cooked ground pork products. Treatments 3 and 4 showed significantly lower CIE $a^*$ values than the control. Treatments 2 and 6 improved the textural properties of the products. In conclusion, the combination of NCM with whey protein concentrate or collagen powder could be suitable for producing phosphate-free meat products.

A Scientific Analysis of Dancheong Pigments at Yaksajeon Hall in Gwallyoungsa Temple (창녕 관룡사 약사전 단청안료의 과학적 분석)

  • Han, Min-su;Kim, Jin-hyoung;Lee, Jang-jon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.18-31
    • /
    • 2014
  • This study aims at identifying of characteristics and types of the pigments used for Dancheong(surface decorative and protective pigments) of Yaksajeon Hall in Gwallyoungsa Temple using a Micro-XRF, XRD, SEM-EDS and thereafter, comparing it with the pigments of the wall painting in the same building and with Dancheong pigments of Daeungjeon Hall. The results can be briefly summarized as two points. First, different types of pigments for red, green and white colours had been applied based on different parts of the building and more than two different pigments had been mixed to produce various colours in so me parts. Second, scientific analysis has confirmed that raw minerals for each colour groups are: Cinnabar, minium and Hematite for red; white clay and oyster shell white($Al_2O_3{\cdot}SiO_2{\cdot}4H_2O$) for white; Atacamite and Celadonite for green; carbon(C) for black; Yellow Ocher for yellow; and Lazulite for blue. Comparative analysis of such result with that of the wall paintings and of Dancheong of Daeungjeon Hall has revealed that similar minerals had been used in overall except that several different pigments had been added or removed for making green, white and yellow colour groups in some parts. In conclusion, the result has displayed that painters had used different ways of producing pigments by a type of painting or a building within the same period or for the buildings in the same buddhist temple compound.

Study on the Manufacturing Technology of Mural Tomb in Goa-dong of Daegaya Period (대가야 고아동 고분벽화 제작기술에 관한 연구)

  • Lee, Hwa Soo;Lee, Han Hyeong;Lee, Kyeong Min;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.457-466
    • /
    • 2014
  • Rigorous analysis was performed to identify the structure and materials of the murals to study techniques used on mural tombs of ancient Daegaya era(6th century). The murals were painted by applying mortar on the walls and the ceiling after building a stone chamber and creating ground layers on mortar layers. Mud was applied on most of the mortar layers on four sides of the walls except the ceiling. Sand was not used in mortar but was made of materials with pure calcium substances. In addition, shells in irregular sizes with incomplete calcination were mixed; and the mortar's white powder was inferred as lime obtained by calcination of oyster shells. Kaolinite($Al_2Si_2O_5(OH)_4$) was used in the ground layer, Cinnabar(HgS) was used for red pigment, Malachite($Cu_2CO_3(OH)_2$) for green and Lead white($PbCO_3{\cdot}Pb(OH)_2$) for white. Mud plaster was applied on the mortar and was composed thinly and densely using clayey of particle size smaller than that of medium sand. It was assumed that the finishing was for repair after long time had passed since the mortar layer came off. Using lime made with oyster shells as mortar is unprecedented in ancient Korean mural tombs and its durability was very poor, suggesting that Gaya's mortar production technique was relatively behind compared to that of Koguryo's in the same era.

A Study on Stability according to the Conservation Environment for Fixative of Korean Mural Painting Layers (한국 흙벽화 채색층 고착제의 보존환경에 따른 안정성 연구)

  • Jin, Byung-hyuk;Wi, Koang-chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.150-171
    • /
    • 2013
  • The most important part of conservation treatment of murals is to preserve them against the risk of a damage by injecting fixative into them when the painting loses its cohesion or powderization of pigments occurred due to occurrence of cracks inside the painting layer. However, studies on the stability of fixative used for painting layers of murals are still insufficient. This study manufactured a mural as a specimen and colored it with four kinds of pigments including oyster shell white, cinnabar, malachite and red clay and applied four kinds of fixative, including, Paraloid $B-72^{(R)}$, Caparol-$binder^{(R)}$, glue and Hydoxypropyl $cellulose^{(R)}$. artificially generated environmental changes in temperature, humidity and ultraviolet rays which may occur after the completion of conservation treatment. Then the changes in physical properties were observed in multifaceted ways such as color stability, contact angle, brilliance, adhesive strength and surface. As a result, this study found that ultraviolet rays and hot?humid environment have a large impact on color stability causing changes in brightness and chroma of all painting layers where the fixative were applied, except for oyster shell white and are considered the main factors of decomposition by accelerating the aging process of fixatives applied. In comparison to the synthetic resins that were also tested in this study, the traditional glue showed satisfactory results in terms of color stability and influence preservation and the hydrophile property. As it showed exceptionally outstanding adhesive strength in all painting layers in the aspect of adhesive strength, it is considered to be highly stabile for the fixation treatment of painting layers of mural.

A Study on the Conservation and Management of the Painting of Shamanistic Spirits in Chiseonggwang Buddha (치성광여래 무신도의 과학적 분석 및 보존처리 연구)

  • Lee, Hyun Jeong;Seo, Jeong Ho
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.712-722
    • /
    • 2021
  • This study presents a method for conserving shamanistic spirits in Chiseonggwang Buddha. Scientific investigation has revealed that these spirits have been subject to degeneration as a result of severe exfoliation and pollution. The materials and preservation treatment techniques used in create these shamanistic spirits were identified through visual inspection and using appropriate scientific equipment. The different types of background paper, background material, and color pigments used in create the shamanistic spirits were analyzed using a colorimeter, stereoscopic microscope, and SEM-EDS techniques. The analysis revealed that the pulp paper was used as the background and synthetic fiber polyester as the background material. In addition, the study of the pigment revealed that the color components were all synthetic, except for red lead [Pb3O4] and oyster shell white [CaCO3]. Moreover, it was confirmed that the green pigment, identified as emerald green [Cu(C2H3O2)2.3Cu(AsO2)2], was a major component of shamanistic spirits in the late 19th century. The shamanistic spirits in Chiseonggwang Buddha were conserved by identifying raw materials and pigments through this detailed analysis.