• 제목/요약/키워드: Oxygenated Hydrocarbons

검색결과 29건 처리시간 0.023초

디젤기관에서 산소성분 첨가에 의한 배기가스 배출특성의 실험적 연구 (The Experimental Study on Exhaust Emission Characteristics with Oxygen Component Addition in Diesel Engine)

  • 오영택;최승훈;장석정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.800-805
    • /
    • 2001
  • Recently, our world is faced with very serious and hard problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions which influenced the environment strong. In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for diesel engine. And, we tried to analysis the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine. It have been investigated by the quantitative analysis of the hydrocarbon $C_1\simC_6$ using the gas chromatography. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether) 5%. The results of this study show that the hydrocarbon $C_1\simC_6$ among the exhaust emissions of the mixed fuels are exhausted lower than those of the diesel fuel at the all load and speed. In particular, high boiling point hydrocarbons such as $C_5$ and $C_6$ were reduced remarkably in high speed and load region.

  • PDF

The Volatile Composition of Kiyomi Peel Oil (Citrus unshiu Marcov×C. sinensis Osbeck) Cultivated in Korea

  • Song, Hee-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.292-298
    • /
    • 2008
  • The volatile composition of Kiyomi peel oil cultivated in Korea was studied by using gas chromatography and gas chromatography-mass spectrometry. The peel oil from the Kiyomi fruit was prepared by using a cold-pressing extraction method. Among the 65 components quantified in Kiyomi oil, 25 terpene hydrocarbons and 40 oxygenated compounds were identified, with peak weight percentages measuring 94.5% and 4.9%, respectively. Limonene was the predominant compound (87.5%), followed by myrcene (2.4%), sabinene (0.9%), $\alpha$-pinene (0.8%), $\beta$-sinensal (0.8%), (Z)-$\beta$-farnesene (0.7%), neryl acetate (0.6%), valencene (0.5%), $\alpha$-farnesene (0.5%), and $\alpha$-sinensal (0.5%). A unique characteristic of the volatile profile of the Kiyomi oil was the proportion of aldehydes (2.7%), which resulted from the relative abundance of $\alpha$- and $\beta$-sinensal. Another unique characteristic of the Korean Kiyomi oil was its relative abundance of $\beta$-sinensal, (Z)-$\beta$-farnesene, neryl acetate, valencene, $\alpha$-sinensal and nootkatone. Valencene and $\alpha$- and $\beta$-sinensal were regarded as the influential components of Korean Kiyomi peel oil.

건조생강의 감마선 조사에 의한 휘발성 향기성분 변화 (Effect of Gamma-Irradiation on the Volatile Flavor Compounds from Dried Ginger (Zingiber officinale Roscoe))

  • 노기미;서혜영;;심성례;양수형;이성진;김경수
    • 한국식품영양과학회지
    • /
    • 제34권6호
    • /
    • pp.892-898
    • /
    • 2005
  • 본 연구에서는 세계적으로 널리 이용되고 있는 건조 향신료 중 건조생강의 감마선 조사에 의한 휘발성 향기성분의 변화를 관찰하였다. 비조사 건조생강과 10 kGy의 선량으로 조사처리된 건조생강을 SDE방법으로 휘발성 성분 추출후 GC/MS로 분석하였다. 비조사 시료와 조사시료에서 각각 83종, 71종의 화합물이 분리 동정되었으며, 감마선 조사에 따른 뚜렷한 상관관계는 없었다. 건조생강의 주된 향기성분으로는 $\alpha$-zlngiberene, $\beta$-sesquiphellandrene, geranial, (Z, E)-$\alpha$-farnesene, $\beta$-phellandrene으로 이는 조사 처리된 건조생강의 휘발성 향기성분의 조성과 유사함을 알 수 있었다. 방사선 비조사 및 조사 처리된 정유성분의 총량은 각각 $98.27\%$에서 $98.12\%$$ 0.15\%$ 감소하였으며 monoterpene은 $17.15\%$에서 $17.90\%$로 미량 증가하였으며 , sesquiterpene은 $60.99\%$에서 $61.24\%$로 증가하였다. 반면 oxygenated monoterpene과 oxygenated sesquiterpene은 각각 $0.5\%$$0.65\%$ 감소되었다. 성분들 중에서 감마선 조사에 따라 $\alpha$-zingiberene, $\beta$-sesquiphellandrene, geranial, (Z,E)-$\alpha$-farnesenesene, $\beta$-phellandrene등의 합량이 감소됨을 알 수 있었지만 이는 소량으로 감마선 조사가 건조생강의 관능적 요소에 미치는 영향으로 보기는 어렵다.

비재내형(非在來型) 원유(原油) 자원(資源)으로서의 오일셰일 특성(特性) 고찰(考察) (Characteristics of Oil Shale as Unconventional Oil Resources)

  • 나정걸;정수현
    • 자원리싸이클링
    • /
    • 제17권6호
    • /
    • pp.62-67
    • /
    • 2008
  • 오일셰일은 유기물질인 케로젠을 함유한 암석으로 레토르팅을 통하여 암석 내부의 케로젠을 오일로 회수할 수 있다. 본 연구에서는 미국과 러시아산 오일셰일 시료에 대한 물성을 분석하고 레토르팅 실험을 수행함으로써 대체 원유로서의 활용가능성을 평가하였다. 열중량 분석 결과, 오일셰일은 케로젠 분해로 인한 유기물 배출과 $CaCO_3$ 분해로 인한 $CO_2$ 배출의 두 단계 열분해 과정을 거치는 것으로 조사되었다. 오일셰일 내 유기물은 수소/탄소비가 높아 레토르팅을 통하여 액체연료로 쉽게 회수할 수 있으며 Fischer assay 레토르팅에 의한 오일 회수율은 미국산이 12.7%, 러시아산이 18.5% 정도였다. 미국 및 러시아산 오일셰일로부터 회수한 셰일오일은 비중 및 비점이 재래형 원유보다 높아 정유시설 투입을 위해서 추가 업그레이딩 공정이 필요하지만 유황분 함량이 낮을뿐 아니라 바나듐과 니켈 등의 촉매독 성분이 미량이어서 후속 정제공정에 드는 비용은 적을 것으로 예상된다. 회수된 오일에 대하여 GC/MS 분석을 수행한 결과 미국산 세일오일은 파라핀 성분이 다량 존재하였고, 러시아산 세일오일은 주로 산소가 포함된 유기화합물이 많이 함유되어 있음을 알 수 있었다.

배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향 (The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge)

  • 이광식;여영구;최재욱;이화웅;송형근;나병기
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.52-59
    • /
    • 2006
  • 본 연구에서는 배리어 방전을 이용한 메탄전환 반응에서 수소 및 다른 탄화수소류 화합물의 생성율과 분포에 관하여 알아보았다. 반응기의 외부전극과 내부전극은 SUS로 만들어진 원통형을 사용하였으며, 배리어 방전을 일으키기 위해서 전극 사이에 알루미나 튜브를 사용하였다. 전환된 메탄으로부터 다양한 생성물을 얻기 위해서 유입가스의 조성, 유량변화, 주파수 및 전압을 변화시켜 주면서 실험하였다. 플라즈마 반응에 의한 주요한 생성물들은 에틸렌, 에탄, 프로판, 부탄, 수소, 일산화탄소, 그리고 이산화탄소 등으로 나타났다. 비활성 가스의 사용과 인가전압의 증가에 의해서 메탄 전환율 및 탄화수소류의 선택도가 향상되었다. 유입가스 내에 수증기의 첨가로 인해서 메탄의 전환율 및 수소의 수율이 증가되었다. 수증기 첨가 반응에서 에탄, 프로판 그리고 부탄은 더 높은 전압을 인가하였을 때 수율이 증가하였으며, 아세틸렌과 에틸렌은 보다 낮은 전압에서 수율이 증가함을 알 수 있었다.

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha;Vaitilingom, Mickael;Zhang, Zenghui;Liyana-Arachchi, Thilanga P.;Stevens, Christopher S.;Hung, Francisco R.;Valsaraj, Kalliat T.
    • Advances in environmental research
    • /
    • 제7권2호
    • /
    • pp.139-159
    • /
    • 2018
  • Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

머위 정유의 화학적 성분 분석 및 수확 연도에 따른 주요 화합물 함량 비교 (Analyses of the Chemical Composition of Petasites japonicus (S. et Z.) Maxim Essential Oil and Comparison of the Major Compounds by Crop Year)

  • 최향숙
    • 한국식품영양학회지
    • /
    • 제30권1호
    • /
    • pp.156-165
    • /
    • 2017
  • This study investigated the chemical composition of Petasites japonicus (S. et Z.) Maxim essential oil. During the period 2011~2013, P. japonicus (S. et Z.) Maxim plant was investigated for composition of the essential oil. Chemical composition and characteristic compounds of the essential oils from the aerial parts of the plant according to the crop year studied. The essential oils consisted of sesquiterpene compounds, which were the most abundant components. Samples collected in 2011 were found to be richer in oxygenated sesquiterpenes, while samples collected in 2012 and 2013 were richer in diterpene alcohols and sesquiterpene hydrocarbons, respectively. Ninety-two compounds were identified in the P. japonicus (S. et Z.) Maxim essential oil of 2011, and caryophyllene oxide (20.49%), ${\beta}$-caryophyllene (10.28%), ${\beta}$-bisabolene (6.80%), and alloaromadendrene (6.50%) were the major compounds. Seventy-four compounds were identified in the plant essential oil of 2012, and phytol (17.22%), ${\alpha}$-farnesene (15.31%), ${\alpha}$-caryophyllene (9.93%), and ${\beta}$-caryophyllene (6.12%) were the major compounds. Ninety-two compounds were identified in the plant essential oil of 2013, and ${\alpha}$-farnesene (22.42%), ${\alpha}$-caryophyllene (21.49%), pentadecane (15.35%), and germacrene (5.70%) were the major compounds. The content of most of the chemical constituents varied significantly with different harvesting time. The content of ${\alpha}$-caryophyllene and caryophyllene oxide was increased significantly from 2011 to 2013. The content of ${\alpha}$-caryophyllene and isocaryophyllene was decreased significantly from 2011 to 2013.

추출방법에 따른 솔잎의 휘발성 성분 조성 비교 (Determination of Aroma Components in Pinus densiflora (Pine Needles) Studied by Using Different Extraction Methods)

  • 이재곤;이창국;백신;권영주;장희진;곽재진;이문수;이계호
    • 한국식품영양학회지
    • /
    • 제19권2호
    • /
    • pp.161-168
    • /
    • 2006
  • 식물체의 향기성분을 분리하는데 주로 사용되는 headspace(DHS, RPHS)법, SPME법, SDE법, SFE법과 최근에 개발된 PDE법으로 솔잎의 휘발성 성분을 추출하였다. 추출된 성분을 Ge/MS를 이용하여 총 65종의 휘발성 성분을 확인하였다. 확인된 성분은 terpene류 25종, alcoholfb류 16종, carbonyls류 9종, esters류 6종, acids류 7종, esters 화합물이 2종인 것으로 나타났다. Headspace(DHS, RPHS)법과 SPME 법에서는 휘발성이 강한 ethyl acetate, 2-ethyl furan, $\beta$-myrcene 등과 같은 저비점 휘발성 성분들이 많이 추출되었다. 반면에, 고비점 휘발성 성분들인 nerolidol, spathulenol, benzoic acid 등은 휘발 성분 추출시 열이 가해지는 SDE법, SFE법, PDE법 등에서는 확인되었으나 headspace법과 SPME법에서는 확인되지 않았다. 이들 6가지 추출방법에서 저비점 휘발성 성분 분석에는 headspace(DHS)법이 가장 좋은 것으로 나타났으며, 고비점 휘발성 성분 분석에는 SDE법이 가장 적합한 것으로 나타났다. 최근에 개발된 PDE법은 SDE법에 비해 추출효율 변에서 약간 떨어지나 전처리 방법이 간단하므로 짧은 시간에 많은 시료를 분석할 때 가장 적합한 방법인 것으로 판단된다.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF