• Title/Summary/Keyword: Oxygen-Fuel Mass Ratio

Search Result 19, Processing Time 0.017 seconds

The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines (기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향)

  • 권병철;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

Performance Prediction of a Gas Turbine Using CO2 as Working Fluid (CO2를 작동유체로 하는 가스터빈의 성능예측)

  • Yang, Hyun-Jun;Kang, Do-Won;Lee, Jong-Jun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • This study investigated the changes in performance and operating characteristics of an F-class gas turbine according to the change of working fluid from air to carbon dioxide. The revised gas turbine is the topping cycle of the semi-closed oxy-fuel combustion combined cycle. With the same turbine inlet temperature, the $CO_2$ gas turbine is expected to produce about 85% more power. The main contributor is the greater compressor mass flow and the added oxygen flow for the combustion. Compressor pressure ratio increases about 50%. However, the gas turbine efficiency reduces about 10 %. Modulation of inlet guide vane to reduce the compressor inlet mass flow, the major purpose of which is to reduce the compressor inlet Mach number, was also performed.

Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel (고온, 고압의 분위기 변화가 n-butanol 및 n-heptane 연료의 연소 특성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The effect of high ambient temperature and pressure conditions on the combustion performance of n-butanol, n-heptane and its mixing fuel (BH 20) were studied in this work. To reveal this, the closed homogeneous reactor model applied and 1000-1200 K of the initial temperature, 20-30 atm of initial pressure and 1.0 of equivalence ratio were set to numerical analysis. It was found that the results of combustion temperature was increased and the ignition delay was decreased when the ambient conditions were elevated since the combustion reactivity increased at the high ambient conditions. On the contrary, under the low combustion temperature condition, the combustion pressure was more influenced by the ambient temperature in the same ambient conditions. In addition, the total mass and the mass density of tested fuels were influenced by the ambient pressure and temperature. Also, soot generation of mixing fuel was decreased than n-heptane fuel due to the oxygen content of n-butanol fuel.

Calculation of the air ratio in the case of firing gaseous fuels containing incombustibles

  • Cho, Kil-Won;Kunwoo Han;Park, Heung-Soo;Lee, Yong-Kuk;Lee, Kun-Hong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • A short-cut equation for the calculation of the air ratio in the case of firing gases containing incombustibles has been derived on the basis of mass balances. The new equation requires the oxygen concentration and the amount of carbon dioxide in the combustion gas, theoretical oxygen and air requirements, and the content of incombustibles other than carbon dioxide in the fuel for the air ratio calculation. By using the equation, a theoretically correct calculation of the air ratio has been enabled.

  • PDF

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.

Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석)

  • DONG HEE KIM;HYOEN SEUNG JUNG;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

A Study About the Effect of Supercharging and Intake Charge on Engine Performance in Spark Ignition Gasoline Engine (SI 가솔린 엔진의 과급 및 흡기가 엔진 성능에 미치는 영향에 대한 연구)

  • Kim, Gi-Bok;Jin, Seok-Jun;Kim, Chi-Won;Yoon, Chang-Sik;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, it is designed and used the test engine bed which is installed with turbocharger, and in addition to equipped using by oxygen adder. It has been controlled the oxygen volumetric fraction of intake air chrge, and supercharged flow rate into the cylinder of SI 4-stroke engine, and then, has been analyzed engine performance, combustion characteristics, and exhaust emission as analysis parameters. The tested parameters were the oxygen fraction and the variation of engine speed and air-fuel ratio.