• Title/Summary/Keyword: Oxygen-Enriched Ratio

Search Result 18, Processing Time 0.022 seconds

Experimental and Numerical Investigations on Detailed Methane Reaction Mechanisms in Oxygen Enriched Conditions (산소부화조건의 메탄 상세반응기구에 대한 실험 및 수치해석 연구)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.207-214
    • /
    • 2004
  • The burning velocities of conventional and oxygen-enriched methane flame in various equivalence ratio were determined by experiments. The validity of existing reaction mechanisms was examined in oxygen-enriched flame on the basis of the experiment results. Modified reaction mechanism is suggested, which was able to predict burning velocity of oxygen enriched flame as well as methane-air flame. Complementary study on reaction mechanisms shows the following results : Present experiment data were found to be more reliable in comparison with existing ones in a oxygen-enrichment condition. It was found that some modification in existing reaction mechanisms is necessary, since discrepancy between measurements and predictions is increasing with oxygen enrichment ratio. The sensitivity analysis was performed to discriminate the dominantly affecting reactions on the burning velocity in various oxygen enrichment and equivalence ratio. A modified GRI 3.0 reaction mechanism based on our experiment results was suggested, in which reaction rate coefficients of (R38) H+O$_2$<=>O+OH in GRI 3.0 reaction mechanisms were corrected based on sensitivity analysis results. This mechanism showed a good agreement in predicting the burning velocity and number density of NO in oxygen-enriched flame and would provide proper reaction information of oxygen-enriched flame at this stage.

The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame (산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

Characteristics for Effects of Co2 Addition to Oxygen-Enriched Combustion (산소부화연소에서 Co2 첨가에 대한 연소 특성)

  • Kim, Han-Seok;Kim, Ho-Keun;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • $CO_2$ is a well-known green house gas as well as the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. Because its adiabatic flame temperature is relatively too high, existing facilities must be changed or the flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were investigated experimentally for the various oxygen-enriched ratios(OER) by the addition of $CO_2$, under constant $O_2$ flow rate. Results showed that the reaction zone was quenched and broadened as the addition of $CO_2$ was increased. The emission of NOx in flue gas was decreased as decreasing temperature in reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone was increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0%, but the composition of CO was decreased by quenching effect at OER=50% and 100%.

Effects of $CO_2$ addition to Oxygen-Enriched Combustion (산소부화연소에서 $CO_2$ 첨가에 대한 영향)

  • Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF

Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine (산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산)

  • Lim, Mun-Sup;Hong, Sung-In;Hong, Myung-Seok;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

Measurement of oxygen isotope ratio using tunable diode laser absorption spectroscopy (다이오드 레이저 흡수분광법을 이용한 산소 동위원소의 성분비 측정)

  • Park, Sang-Eon;Jung, Do-Young;Kim, Jae-Woo;Ko, Kwang-Hoon;Im, Kwon;Jung, Eui-Chang;Kim, Chul-Joong
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Tunable diode laser absorption spectroscopy was performed for analysis of the H$_2$$^{18}$ O/H$_2$$^{16}$ O isotope ratio of a water sample which was enriched by the membrane distillation method. In order to improve the signal-to-noise ratio, the wavelength modulation spectroscopic method was used with a lock-in amplifier. The fringe noise could be suppressed by using the FFT (Fast Fourier Transform) lowpass filter and the optimization of the modulation depth of the laser frequency. The maximum deviation of $\delta$-value was measured to be$\pm$4$\textperthousand$.

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development (지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구)

  • Young Bae Kim;Kijin Jeong;Woohyun Jung;Seok Woo Chung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.