• Title/Summary/Keyword: Oxygen-Concentration

Search Result 3,053, Processing Time 0.032 seconds

Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology (반응표면분석법을 이용한 차가버섯(Inonotus obliquus)의 생리활성물질 최적 추출조건 탐색)

  • Kim, Jaecheol;Yi, Haechang;Lee, Kiuk;Hwang, Keum Taek;Yoo, Gichun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.233-239
    • /
    • 2015
  • This study determined the optimum extraction conditions based on five response variables (yield, total phenolics, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavanging activity, oxygen radical absorbance capacity (ORAC), and ${\beta}$-1,3-glucan content) in chaga mushroom (Inonotus obliquus) using the response surface methodology, where three independent variables (ethanol concentration, extraction temperature, and extraction time) were optimized using a central composite design. The optimum ethanol concentration, extraction temperature, and extraction time were 50% (w/w), $88.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 14.5 h; 50.8%, $92.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 1.5 h; and 90.8%, $92.7^{\circ}C$, and 1.5 h for yield, total phenolics, ABTS, ORAC, and ${\beta}$-1,3-glucan content, respectively. The predicted values of the response variables were compared with those of the extracts under the optimal extraction conditions to verify the models. The optimum extraction condition for the five response variables was predicted to be 81.4% ethanol at $92.7^{\circ}C$ for 14.5 h.

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Corn-zein Laminated Carrageenan Film for Packaging Minced Mackerels (옥수수단백/카라기난 적층필름의 다진 고등어육의 포장특성)

  • Park, Jeong-Wook;Park, Hyun-Jin;Jung, Soon-Teck;Rhim, Jong-Whan;Park, Yang-Kyun;Hwang, Keum-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1381-1387
    • /
    • 1998
  • Laminated films were prepared by casting corn-zein and fatty acid mixed solutions onto ${\kappa}-carrageenan$ films, and the effect of various fatty acids with different concentrations on the film properties such as water vapor permeabilities (WVP), tensile strength (TS) and elongation was investigated. WVP of the film decreased as concentration of fatty acids increased, and the lowest WVP value $(0.497\;ng\;m/m^2\;s\;Pa)$ was achieved with laminated films containing 30% lauric acid/corn-zein. The TS of laminated edible film seemed to decrease as the concentration of fatty acids increased, and TS of the laminated film was the highest (36.21 MPa) when the film contained 10% oleic acid. Weight loss of the minced mackerels packaged with corn-zein/carrageenan film which did not contain fatty acid was 11.7%, but weight losses of the samples packaged with oleic acid and lauric acid were 6.97% and 0.81%, respectively, after 30 days storage at $-20^{\circ}C$. The laminated films had an effect on preventing oxidation of the minced mackerels during storage because of high oxygen barrier property of the film. All of the minced mackerels packaged with the laminated films greatly reduced the peroxide value (POV) compared with unpackaged minced mackerels during storage. Also, thiobarbituric acid (TBA) values of the minced mackerels packaged with the laminated films were lower than that of unpackaged minced mackerels during storage.

  • PDF

Relationship between Limnological Characteristics and Algal Bloom in Lake-type and River-Type Reservoirs, Korea (호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계)

  • Kim, Jong-Min;Heo, Seong-Nam;Noh, Hye-Ran;Yang, Hee-Jeong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.124-138
    • /
    • 2003
  • This paper aimed to analyze the relationship between alga3 bloom patterns and hydrological, limnological data which were collected from major reservoirs in Korea for 8 years (1990${\sim}$1997). Water temperature of river-type reservoirs showed wider seasonal fluctuations than that of lake-type. pH of lake-type reservoirs was low in winter season but high in summer season. In contrast, river-type reservoirs showed high pH in spring and autumn seasons as well, and very low in summer season. COD of lake-type reservoirs and Paldang reservoir was lower (2${\sim}$3 mg/L) than that of Geumgang and Nagdonggang reservoirs (6${\sim}$9 mg/L). Dissolved oxygen (DO) of river-type reservoirs was higher than that of lake-type reservoirs. Seasonal fluctuation pattern of DO saturation in river-type reservoirs was high (80 ${\sim}$100%) and remained relatively constant whereas lake-type reservoirs showed the highest level (93%) in late spring or early summer, which gradually decreased entering winter season(46${\sim}$06%). And monthly variation of DO saturation showed inverse proportion to water volume in lake-type reservoirs. Nutrients concentration in river-type lake is higher than lake-type. Seasonal fluctuation of nutrients (T-N, T-P) in lake-type reservoirs was relatively small than that of river-type reservoirs. Annual mean N/P mass ratio of lake-type reservoirs was higher than that of river-type. Transparency tended to related with the suspended solid concentration in river-type reservoirs. Algal bloom of lake-type and river-type reservoirs occurred at any time except rainfall and winter periods. And it dominated in summer and early autumn, respectively. Algal bloom of river-type reservoirs was higher than that of lake-type. Relationship between rainfall and chlorophyll- a in lake-type reservoirs was relatively high, however river-type reservoirs showed insignificant.

Antioxidant activity of ethanol extract of Lycium barbarum's leaf with removal of chlorophyll (클로로필을 제거한 영하구기엽 에탄올 추출물의 항산화 활성)

  • Kim, Ji Eun;Bae, Su Mi;Nam, You Ree;Bae, Eun Young;Ly, Sun Yung
    • Journal of Nutrition and Health
    • /
    • v.52 no.1
    • /
    • pp.26-35
    • /
    • 2019
  • Purpose: The aim of this study was to estimate the antioxidant activities of 50%, 70%, and 100% ethanol extracts of Lycium barbarum leaf and chlorophyll removal extract. Methods: The antioxidant activities were estimated by measuring total polyphenol content and by assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfate) (ABTS) radical scavenging activities and ferric reducing antioxidant power (FRAP). In addition, reactive oxygen species (ROS) production, DNA fragmentation, and antioxidant enzyme (superoxide dismutase and catalase) activities of the extracts were measured in hydrogen peroxide ($H_2O_2$)-stressed HepG2 cells. Results: The total polyphenol content, DPPH and ABTS radical scavenging activities, and FRAP value of the extracts increased in an ethanol concentration-dependent manner. The antioxidant activities of the chlorophyll-removal extracts were much higher than those of the chlorophyll-containing extracts. Cytotoxicity was not observed in HepG2 cells with extracts up to $1,000{\mu}g/mL$. All extracts inhibited ROS production in a concentration-dependent manner from $31.3{\mu}g/mL$ and inhibited DNA damage at $250{\mu}g/mL$. The SOD and catalase activities of cell lines treated with the extracts and $H_2O_2$ were similar to those of normal cells, indicating a strong protective effect. Conclusion: Lycium barbarum leaf extracts had high antioxidant activities and protected $H_2O_2$-stressed HepG2 cells. Since the chlorophyll-removal extract exhibited higher antioxidant activities than the chlorophyll-containing ones and the cytoprotective effect was similar, chlorophyll removal extract of Lycium barbarum leaf could be developed as ingredients of functional food and cosmetics.

Antioxidant and Anti-inflammatory Activities of Water and the Fermentation Liquid of Sea Tangle (Saccharina japonica) (다시마 물 추출액과 발효액의 항산화 및 항염증 활성)

  • Jung, Kyung Im;Kim, Bo Kyung;Kang, Jeong Hyeon;Oh, Geun Hye;Kim, In Kyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.596-606
    • /
    • 2019
  • The study investigated the physiochemical properties and the antioxidant and anti-inflammatory activities of the sea tangle (Saccharina japonica) in a water extract before (STWE) and after (STFL) fermentation with Lactobacillus brevis. The pH values of STWE and STFL were 6.18 and 4.16, and the sugar contents were $8.50^{\circ}Brix$ and $7.40^{\circ}Brix$, respectively. The main free amino acids of STWE and STFL were glutamic acid, aspartic acid, and alanine, and the ${\gamma}$-amino butyric acid (GABA) content was increased by fermentation. The total polyphenol contents of STWE and STFL were 498.29 and 615.77 mg gallic acid equivalent (GAE)/ml, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of STWE and STFL were markedly increased in a dose-dependent manner, and revealed about 89.89% and 96.94% activities, respectively, at 10% concentration (p<0.05). The superoxide dismutase (SOD) activities of STWE and STFL were also markedly increased in a dose-dependent manner, and the activity of STFL was significantly increased when compared with STWE (p<0.05). The anti-inflammatory activity was examined in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. STWE and STFL decreased the production of reactive oxygen species (ROS), which had levels of about 189.90% and 174.69% at 1% concentration, respectively (p<0.05). The contents of pro-inflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-{\alpha}$) and interleukin-6 (IL-6), were decreased more by addition of STFL than by addition of STWE. The STWE and STFL showed high antioxidant and anti-inflammatory activity, and these activities were increased by fermentation. Therefore, sea tangle extracts can be used as functional food materials.

Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET (SWAT-WET을 이용한 안동호의 수질 및 수생태계 모델 구축)

  • Woo, Soyoung;Kim, Yongwon;Kim, Wonjin;Kim, Sehoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.719-730
    • /
    • 2021
  • The objective of this study is to develop the water quality and aquatic ecosystem model for Andong lake using SWAT-WET (Soil and Water Assessment Tool-Water Ecosystem Tool) and to evaluate the applicability of WET. To quantify the pollutants load flowing into Andong lake, a watershed model of SWAT was constructed for Andong Dam basin (1,584 km2). The calibration results for Dam inflow and water quality loads (SS, T-N, T-P) were analyzed that average R2 was more than 0.76, 0.69, 0.84, and 0.60 respectively. The calibrated SWAT results of streamflow and nutrients concentration was used into WET input data. WET was calibrated and validated for water temperature, dissolved oxygen, and water quality concentration (T-N, T-P) of Andong lake. The WET calibrated results was analyzed that PBIAS was +19%, -13%, +4%, and +26.5% respectively and showed that it was simulated to a significant level compared with the observation data. The observed dry weight (gDW/m2) of zoobenthos was less than 0.5, but the average value of simulation was analyzed to be 0.8, which is because the WET model considers zoobenthos with a broader concept. Although accurate calibration is difficult due to the lack of observed data, SWAT-WET can analyze the effects of environmental change in the upstream watershed on the lake based on long-term simulation based on watershed model. Therefore, the results of this study can be used as basic data for managing the aquatic environment of Andong lake.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.