• Title/Summary/Keyword: Oxygen volume fraction

Search Result 54, Processing Time 0.023 seconds

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics (산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

A Experimental study on combustion and exhaust characteristics by intake composition in SI gasoline engine (SI가솔린 기관에서 흡기조성에 따른 연소 및 배기특성에 관한 실험적 연구)

  • Choi, Il-Dong;Kim, Chi-Won;Yoon, Chang-Sik;Kim, Gi-Bok;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.56-66
    • /
    • 2017
  • In this experimental study, it is designed and used the test engine bed which is installed with the exhaust gas recirculation, and in addition to equipped using by oxygen adder. It has been tested and analyzed the combustion and emission characteristics, cycle variability and engine performance by controlling the oxygen volume fraction, EGR rate, engine speed and equivalence ratio.

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

Repeated Fed-Batch Fermentation of Wheat Flour Solution by Mixed Lactic Acid Bacteria (혼합 젖산균을 이용한 밀가루 용액의 반복 유가식 발효)

  • Kim, Sang-Yong;Noh, Bong-Soo;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.343-347
    • /
    • 1997
  • Effect of culture conditions on the fermentation of wheat flour solution by mixed lactic acid bacteria of Lactobacillus brevis, L. fermentum and L. plantarum was investigated. The optimum temperature for the fermentation of wheat flour solution was $35^{\circ}C$ because pH decreased the lowest value and TTA (total titrable acidity) increased the highest value at this temperature. In aerobic condition, fermentor was purged with air at 1.0 vvm and was purged with nitrogen gas at 1.0 vvm in anaerobic condition. The decrease of pH and the increase of TTA in aerobic condition were higher than those in anaerobic condition. In aerobic condition, the optimum condition of oxygen supply was found to be oxygen transfer rate coefficient of $60\;hr^{-1}$ which corresponded to agitation speed of 250 rpm in a 5 L fermentor. Repeated fed-batch cultures were performed using pH-stat in order to increase the productivity of fermented wheat flour. With increasing the repeated fraction of culture volume, mean cycle time increased but maximum operation time decreased. However, the volume of produced broth per culture volume per time and total volume of produced broth per culture volume were maximum at the repeated fraction of culture volume of 20%. In a repeated fed-batch fermentation of wheat flour solution using mixed lactic acid bacteria, the culture condition was optimum at temerature of $35^{\circ}C$, aeration rate of 1.0 vvm, oxygen transfer rate coefficient of $60\;hr^{-1}$, and repeated fraction of culture volume of 20%.

  • PDF

Effects of Open or Closed Suctioning on Lung Dynamics and Hypoxemia in Mechanically Ventilated Patients (기관 내 흡인 유형이 인공호흡기 대상자의 폐기능과 저산소혈증에 미치는 효과)

  • Lee, Eun Young;Kim, Su Hyun
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.2
    • /
    • pp.149-158
    • /
    • 2014
  • Purpose: This study was conducted to compare effects of open and closed suctioning methods on lung dynamics (dynamic compliance, tidal volume, and airway resistance) and hypoxemia (oxygen saturation and heart rate) in mechanically ventilated patients. Methods: This study was a cross-over repeated design. Participants were 21 adult patients being treated with endotracheal intubation using a pressure-controlled ventilator below Fraction of Inspired Oxygen ($FiO_2$) 60% and PEEP $8cmH_2O$. Data were collected at baseline and 1, 2, 3, 4, 5, and 10 minutes after suctioning. Data were analyzed using two-factor ANOVA with repeated measures on time and suctioning type. Results: Effects of the interaction between suction type and time were significant for oxygen saturation and heart rate but not significant for dynamic compliance, tidal volume, or airway resistance. Prior to performance of suctioning, tidal volume and oxygen saturation were significantly lower, but airway pressure and heart rate were significantly higher using the closed suctioning method as compared with the open suctioning method. Conclusion: For patients on ventilator therapy below $FiO_2$ 60% and PEEP $8cmH_2O$, open suctioning performed after delivery of 100% $FiO_2$ using a mechanical ventilator may not have as much negative impact on lung dynamics and hypoxemia as closed suctioning.

Synthesis of Solid Electrolyte Nasicon by Solid State Reaction

  • Kim, Cheol-Jin;Chung, Jun-Ki;Lim, Sung-Ki;Rhee, Meung-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Solid electroyte nasion was synthesized by the optimized solid state reaction minimizing the volume fraction of secondary $ZrO_2$ and glassy phases. To compensate for the evaporation of Na and P during heat-treatment, excess Na and P were added to the starting composition $Na_{1+x} Zr_2 Si_x P_{d-x} O_{12}$ (x=2.1). Phases pure nasicon comparable in volume fraction to the one obtaied from sol-gel process were synthesized after the reaction at $1100~1150^{\circ}C$,$ P_{O2}>=0.1-0.15 $$ZrO_2$ increased with the heat-treatment time due to the decomposition of nasicon phase and that of glassy phase increased as partial oxygen pressure decreased. The synthesized nasion showed a good electrical conductivity of $-1{\times}10^{-2}({\omega}{\cdot}cm)^{-1}$ at $350^{\circ}C$.

  • PDF

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

Effect of Initial Diameter on the Soot Generation of Toluene Fuel Droplet (초기 직경 변화가 Toluene 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • The main purpose of this study is to provide the information of soot generation of toluene fuel droplet. To achieve this, this paper provides the experimental results on the different initial diameter of toluene droplet combustion characteristics conducted under equivalent ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) conditions. Visualization of single fuel droplet was performed with high resolution CCD camera and visualization system. At the same time, ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) were maintained by ambient condition control system. Soot volume fraction ($f_v$) was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The result of soot generation was almost the same regardless of initial droplet diameter since thermophoretic flux is not much changed under the same ambient conditions. Soot standoff ratio (SSR) of 2 mm diameter showed unstable variation characteristics due to the short available measuring time.