• Title/Summary/Keyword: Oxygen sensor probe module

Search Result 2, Processing Time 0.015 seconds

Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography (UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작)

  • Ahn, Ki Do;Oh, Seung hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.37-41
    • /
    • 2018
  • This paper presents the integrated fluorescent oxygen sensor probe module based on planner lightwave circuits using UV imprint lithography. The oxygen sensor system is consisted of the optical source part, optical detector part and optical sensing probe part to be composed of the planner lightwave circuit and oxygen sensitive thin film layer. Firstly, we optimally designed the planner lightwave circuit with asymmetric $1{\times}2$ beam splitter using beam propagation method. Then, we fabricated the planner lightwave circuits using UV imprint lithography process. This planner lightwave circuits transmitted the optical power with 76% efficiency and the fluorescence signal with 70% efficiency. The oxygen sensitive thin film layer is coated on the end face of planner lightwave circuit. The oxygen sensor system using this sensor probe module with planner lightwave circuit could measure the concentration with 0.3% resolution from 0% to 20% gas range. This optical oxygen sensor probe module make it possible to compact, simple and cheap measurement system.

Development of ECS-NIBP-$SpO_2$ Patient Monitoring System (ECG-NIBP-$SpO_2$ 환자감시장치 개발)

  • Kim, N.H.;Shin, W.H.;Lee, G.K.;Ra, S.W.;Kim, G.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.129-130
    • /
    • 1998
  • In this paper, We designed the ECG-NIBP-$SpO_2$ patient monitor. This production can measure Electrocardiograph, Heart Rate, Noninvasive Blood Pressure, and Oxygen Saturation for Noninvasive Mehod and can display each information. These informations were implemented by the electrodes of ECG part, the cuff of NIBP module and the finger probe with light sensor of $SpO_2$ without injection of needle or catheter. In addition, We developed a new analysis algorithm and measurement technique for NIBP and $SpO_2$ to observe patient's conditions correctly.

  • PDF