• Title/Summary/Keyword: Oxygen exchange reaction

Search Result 63, Processing Time 0.019 seconds

Variation in the Properties of Contaminated Coastal Sediment with the Mixing of Alkaline Industrial By-product (알칼리성 산업부산물의 혼합에 따른 연안 오염퇴적물의 성상 변화)

  • Park, Seongsik;Woo, Hee-Eun;Lee, In-Cheol;Kim, Do-Hyung;Park, Jeonghwan;Kim, Jinsoo;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.914-919
    • /
    • 2019
  • A mesocosm experiment considering water exchange was conducted to evaluate the change in the properties of contaminated coastal sediment. The contaminated coastal sediment sample was prepared by mixing with granulated coal ash(GCA), which is an alkaline industrial by-product. During one month of observation time, the phosphate concentration of the GCA sample case was measured to be 19.0 and 0.4 mg/L lower than that of the control sample at the pore water and overlying water, respectively. The hydrogen sulfide concentration of the GCA sample case was 5.0 mg/L, which is significantly lower than that of the control sample(112.5 mg/L). Further addition of GCA in the sediment reduced the concentrations of phosphate and hydrogen sulfide, and could enhance the adsorption reaction, when compared to the sediment without GCA. The dissolved oxygen concentration in the overlying water of the GCA sample was measured to be 3.47 mg/L higher than the control sample. From the above results, we confirmed that GCA is an effective material for reducing pollutants in coastal sediment.

Structural and Electrical Properties of (La0.7-xCex)Sr0.3MnO3 Ceramics ((La0.7-xCex)Sr0.3MnO3 세라믹스의 구조적, 전기적 특성)

  • Tae-Yeon In;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.249-254
    • /
    • 2023
  • La0.7-xCexSr0.3MnO3 specimens were fabricated by a solid state reaction method and structural and electrical properties with variation of Ce4+ contents were measured. All specimens exhibited a polycrystalline rhombohedral crystal structure, and the (110) peaks were shifted to low angle side with increasing the amount of Ce4+ contents. As Ce4+ ions with different ion radii and charges are substituted with La3+ ions, electrical properties are thought to be affected by changes in the double exchange interaction between Mn3+-Mn4+ ions due to distortion of the unit lattice, a decrease in oxygen vacancy concentration, and an increase in lattice defects. Resistivity gradually decrease as the amount of Ce4+ added increased, and negative temperature coefficient of resistance (NTCR) properties were shown in all specimens. In the La0.5Ce0.2Sr0.3MnO3 specimens, electrical resistivity, TCR and B-value were 31.8 Ω-cm, 0.55%/℃ and 605 K, respectively.

Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands (악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질)

  • Jeong, O Jin;Choe, Chil Nam;Yun, Seok Jin;Son, Yeon Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.143-158
    • /
    • 1990
  • Metal complexes were prepared by reacting uranium (Ⅵ), thorium (Ⅳ) and rare earth metal (Ⅲ) ions including Nd (Ⅲ), Sm (Ⅲ) and Ho (Ⅲ) with macrocyclic ligands including five crown ethers, nine crownands and one cryptand ligands, and subjected to NMR studies in order to examine coordination sites of the ligands and compositions of the complexes formed. Among the marcocyclic ligands, crown ethers and crownand ligands have shown down-field shifts of the methylene protons of the lcigands by forming stable complexes with all the metal ions and the differences of chemical shifts were decreased as increasing of the cavity-size of crown ethers for the same metal ions and decreasing of the atomic number of the rare earth metals for the same ligands. It has been found that crownand 22 gave a stable complex with uranium(Ⅵ) ion by the coordination through both oxygen and nitrogen atoms of the ligand whereas no complex was formed with the rare earth metal(Ⅲ) ions, which on the other hand were found to form stable complexes with cryptand 221. The rest of the crowand ligands have also been found to form stable complexes with uranium(Ⅵ) ion by coordinating through all the oxygen and nitrogen atoms of the ligands whereas no complexes were formed with the rare earth metal(Ⅲ) ions. It has also been shown by 1H-NMR study that uranium(Ⅵ), thorium(Ⅳ) and rare earth metal(Ⅲ) ions formed 1:1 complexes with the macrocyclic ligands except for thorium(Ⅳ) complex of 12C4 in which the mole ratio of metal to ligand is 1:2. More stable metal complexes show larger changes in chemical shifts of the coordinated ligand protons. Finally, the rare earth metal(Ⅲ) complexes of 18C6 have shown ligand exchange reaction with the solvent molecules in acetylacetone solution, which was not observed for the uranium (Ⅵ) complexes.

  • PDF