• Title/Summary/Keyword: Oxygen enriched

Search Result 133, Processing Time 0.027 seconds

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

Antimicrobial polyhydroxybutyrate submicron fiber mat loaded with extract of Hypericum perforatum

  • Beran, Milos;Horna, Ales;Vorisek, Viktor;Berkova, Eliska;Korinkova, Radka;Trousil, Vojtech;Hrubanova, Marketa
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.257-270
    • /
    • 2022
  • The aim of this work was to prepare a new biodegradable polyhydroxybutyrate (PHB) submicron fiber mat loaded with hypericin-rich Hypericum perforatum raw extract by centrifugal spinning technology, an alternative approach to the traditional method of electrospinning to fabricate nanofibers or microfibers from solutions at high speed and low cost. Hypericins in methanol/acetone extract of H. perforatum were determined by UHPLC-MS/MS and HPLC/PDA. Submicron fiber mats composed of pure PHB or PHB enriched with H. perforatum extract were prepared using a pilot plant demonstrator for the centrifugal spinning technology and characterized by SEM. Singlet oxygen production was quantified by the 1,3-diphenylisobenzofuran (DPIBF) method in hexane. The results proved a significant production of singlet oxygen by the prepared submicron fiber mat. We also found a significant antibacterial activity against the bacterial strain Escherichia coli CCM 5417 by a method in accordance with JIS Z 2801/ISO 22196 standards. The H. perforatum extract-enriched PHB submicron fiber mats showed potential for the development of self-cleaning and antimicrobial air filters.

Stress Granules Inhibit Coxsackievirus B3-Mediated Cell Death via Reduction of Mitochondrial Reactive Oxygen Species and Viral Extracellular Release

  • Ji-Ye Park;Ok Sarah Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.582-590
    • /
    • 2023
  • Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames (메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.839-845
    • /
    • 2011
  • We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

Effect of oyster shell powder on nitrogen releases from contaminated marine sediment

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Yoo, Gilsun;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • Nitrogen flux release from organically enriched sediments into overlying water, which may have significantly influence on water quality and increasing continuous eutrophication. The purpose of this study is to evaluate the remediation efficiency of oyster shell powder and its treated product into organically enriched sediment in terms of nitrogen flux, organic matter, chlorophyll-a, pH and dissolved oxygen (DO). The TOSP was mainly composed of CaO2. The application of TOSP into the sediment has increased the pH, DO and significantly decreased the concentrations of NH4+-N and T-N compared to other basins. On the other hand, nitrate was enriched with the addition of treated oyster powder, an oxygen releasing compound on both phases. Furthermore, chlorophyll-a was found to be increasing with time in the control basin meanwhile it dropped drastically with the addition of TOSP, which implied on the repression of algal growth owing to blockage of nitrogen source migrating from the sediment. This study has shown that the TOSP was effective to improve sediment-water quality, diminish eutrophication and control harmful algae blooms in a marine environment. Therefore, it is a good reference as an effective environmental remediation agent.

Improvement of Chlorophyll-photosensitized Oxidation of Fish Oil-enriched Emulsion by Sesame Oil Addition and Antioxidant Content Changes (참기름 첨가에 의한 어유 보강 에멀젼의 클로로필에 의한 광산화 개선 효과와 산화 방지제 함량 변화)

  • An, Sojin;Lee, Edwald;Choe, Eunok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This study was performed to evaluate the effects of sesame oil addition to a tuna oil-enriched emulsion during chlorophyll-photosensitized oxidation. The emulsion principally consisted of tocopherol-stripped canola and tuna oil with or without sesame oil, acetic acid, phospholipids, and xanthan gum. Chlorophyll b was added to promote the production of singlet oxygen upon exposure to light. The oxidation of oil in the emulsion was evaluated by determining the peroxide value (POV) and conjugated dienoic acid (CDA) contents. Concentrations of minor compounds in the emulsion were monitored. Increasing POV and CDA contents in the emulsion were paralleled with decreased docosahexaenoic acid during oxidation, and oxidation was inhibited by the addition of sesame oil. Chlorophyll, polyphenols, tocopherol, and phospholipids were degraded during oxidation of the emulsion; however, their degradation was slowed down by the addition of sesame oil. Lignans in the emulsions containing added sesame oil were barely changed, suggesting that they quenched singlet oxygen physically. Polyphenols were the most effective in improving the stability of tuna oil-enriched emulsions during chlorophyll-photosensitized oxidation.

Oxidation Behavior of Ag-Cu-Tio Brazing Alloys (Ag-Cu-Ti 브레이징 합금의 산화거동)

  • 우지호;이동복;장희석;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 1998
  • The oxidation behavior of Ag-36.8a%Cu-7.4at%Ti alloy brazed on Si3N4 substrate was investigated at 400, 500 and 600$^{\circ}C$ in air. Under this experimental condition Si3N4 and Ag were not oxidized whereas Cu and Ti among the brazing alloy components were oxidizied obeying the parabolic oxidation rate law. The activation energy of oxidation was found to be 80kj/ mol which was smaller than that of pure Cu owing to the presence of oxygen active element of Ti. The outer oxide scale formed from the initial oxidation state was always composed of Cu oxides which were known to be growing by the outward diffusion of Cu ions. As the oxidation progressed the concentration gradient occurred due to the continuous consumption of Cu as Cu oxides and consequently build-up of an Ag-enriched layer below the Cu oxides resulted in the formation of multiple oxide scales composed of Cu oxide (CuO) /Ag-enriched layer/Cu oxide (Cu2O) /Ag-enriched layer. Also the inward diffusing of oxygen through Cu oxide and Ag-enriched layers led to the formation of internal oxides of TiO2.

  • PDF

Production of High Purity Oxygen by Combination of Membrane and PSA Methods (분리막과 PSA혼합법에 의한 고순도 산소의 제조)

  • Hwang, Sun-Tak
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • There are growing needs to produce relatively high purity(99.0% or higher) oxygen at low cost. For small scale production, both pressure swing adsorption(PSA) and membrane process are competitive and less expensive or more convenient than well known cryogenic fractionation technology. A continuous membrane column(CMC) combined with a PSA oxygen generator can be employed to produce high purity oxygen continuously. The oxygen enriched gas generated by a PSA unit, with a concentration of 93~94%, is fed to the CMC that consism of three modules of poly(imide) hollow fibers. Several experiments were conducted by varying parameters, such as feed flow rate, transmembrane pressure drop, stage cut, and feed location in order to obtain a high oxygen concentration above 99.0%. A two-series unit mode was also employed with CMC operation to optimize the given membrane area.

  • PDF