• Title/Summary/Keyword: Oxygen electrode system

Search Result 110, Processing Time 0.02 seconds

Electrochemical Determination of Immobilization Technique for Glucose Sensor Fabrication (포도당 센서의 제작을 위한 고정화 방법의 전기화학적 결정)

  • 정태훈;홍석인;노봉수;정용섭;윤정원;김태진
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 1998
  • The present work proposes a simple electrochemical method applicable to any immobilization processes of oxidase using a Clark type oxygen electrode as a base transducer. The present work suggests an optimal immobilization technique among three different methods of glucose oxidase(GOD) onto one side of $37[\mu}$mthick blend membranes, composed o 80% of cellulose triacetate and 20% of polycaprolactone, on the basis of the maximum Michaelis-Menten parameter(Vm) determined by either steady state or transient analyses. The electrode system was made of disk type gold cathode(4mm diameter) and Ag/AgCl anode. One side of the blend membrane was in contact with the cathode surface while the other side was immobilized with GOD either in covalent-bond or cross-linked forms, the latter being covered by $25{\mu}$m thick dialysis membrane of cellulose acetate. The resultant current density was on-line monitored by a potentiostat while glucose level was varied from 1 to 20 mM. The present study shows that direct cross-linking of GOD with glutaraldehyde was mostly preferred for fabrication of glucose sensor, on the basis of resultant kinetic parameters from either steady state or transient analyses.

  • PDF

Automatic On-line BOD Measurement System Using A Microbial Membrane Electrode (미생물막 전극을 이용한 BOD 자동화 측정장치)

  • Oh, Hyuk;Kim, Hai Dong
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.335-340
    • /
    • 1995
  • Automatic biochemical oxygen demand(BOD) measurement system has heen developed using a microbial membrane electrode, prepared from Bacillus subtilis and polyvinyl alcohol(PVA). The automatic BOD measurement system showed a linear response curve up to BOD 60 ppm using a glucose/glutamic acid standard solution, and all the BOD measurement processes are carried out automatically to calculate BOD whithin 10 min after each sample injection. The response times of the microbial electrode was 5 minutes with a 5 min recovery time between measurements and the relative error of the BOD estimation was within 10%.

  • PDF

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min;Choi, Chang-Ho;Kim, Mi-A;Hyun, Moon-Sik;Shin, Sung-Hye;Yi, Dong-Heui;Kim, Hyung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF

Investigation on the Stability Enhancement of Oxide Thin Film Transistor (산화물반도체 트랜지스터 안정성 향상 연구)

  • Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.351-354
    • /
    • 2013
  • Thin-film transistors(TFTs) with silicon-zinc-tin-oxide(SiZnSnO, SZTO) channel layer are fabricated by rf sputtering method. Electrical properties were changed by different annealing treatment of dry annealing and wet annealing. This procedure improves electrical property especially, stability of oxide TFT. Improved electrical properties are ascribed to desorption of the negatively charged oxygen species from the surfaces by annealing treatment. The threshold voltage ($V_{th}$) shifted toward positive as increasing Si contents in SZTO system. Because the Si has a lower standard electrode potential (SEP) than that that of Sn, Zn, resulting in the degeneration of the oxygen vacancy ($V_O$). As a result, the Si acts as carrier suppressor and oxygen binder in the SZTO as well as a $V_{th}$ controller, resulting in the enhancement of stability of TFTs.

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System (Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성)

  • Baek, Hyun-Deok;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor (다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구)

  • Jeong, Il-Son;Jung, Jae-Chil;Kim, Tai-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.

Investigation of the Flow Dependence of a FET-Type Dissolved Oxygen Sensor and Its Reducing Method (FET형 용존 산소 센서의 유속에 의한 영향 조사와 감쇄 기법)

  • Jeong, H.;Kim, Y.J.;Lee, Y.C.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-186
    • /
    • 2001
  • Recently, FET type dissolved oxygen sensor was proposed to overcome the disadvantages of the amperometric Clark-type sensor. The inherent problem of the proposed sensor, however, is the flow dependence of the sensor performances since the proposed sensor detects the pH change in close proximity to the working electrode. In this study, we decided the direction which minimize the flow effect in FIA(flow injection analysis) system. And a hydrodynamic buffer layer which can reduce the flow dependence were proposed. The suggested buffer-layers were formed onto sensing area and working electrode with mixed polymer matrix of TEOS(tetraethylorthosilicate) and DEDMS(diethoxydimethylsilane).

  • PDF