• Title/Summary/Keyword: Oxygen consumption Calorimeter

Search Result 18, Processing Time 0.025 seconds

The Study of a Correlation between Heat Release and Smoke Production by Using Oxygen Consumption Calorimeter Up to 10 MW Facility (10MW급 까지의 산소소모율법 칼로리미터를 활용한 열방출률과 연기발생률의 상관성에 관한 연구)

  • Ryu, Sang-Hoon;Yoo, Yong-Ho;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.58-65
    • /
    • 2010
  • The fire accidents having recently occurred are getting more and more larger and causing lots of damage in terms of property loss and casualties increase, so there is in need of technical fire safety development like comprehensive prevention solution in order to effectively prevent. Especially, the needing of new paradigm for advanced fire safe technology is gathering strength in high-rise modern building construction. Therefore, we want to find out on this paper what is a correlation between heat release rate measurement and smoke release volume by three parts of oxygen consumption calorimeter in bench scale calorimeter (cone calorimeter/ISO 5660/Avg.500Kw), Medium scale calorimeter (Room corner tester, Single burning Item/ISO 9750, EN 13823/Avg.3MW), and large scale calorimeter (Industry calorimeter/Avg. 10MW). Thus, Smoke detective of new paradigm devised by making use of a correlation between heat release and smoke production is to help reduce loss property and casualties. Ultimately, based on this theory, a new concept of fire alarm and evacuation system will be developed and expected to apply to a skyscraper.

Analysis of Heat Release Rate with Various Diameter of Heptane Pool Fire Using Large Scale Cone Calorimeter (헵탄의 화원 직경 변화를 고려한 대형콘칼로리미터의 발열량 측정 결과 분석)

  • You, Woo Jun;Nam, Dong-Gun;Youm, Moon Cheon;Kim, Sung-Chan;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • The present study has been conducted to analyse the effects of various pool diameters on the measurement of heat release rate (HRR) of heptane fire using large scale cone calorimeter (LSC). The burning rate which is the major parameter for HRR compared with the previous model suggested by A. Hamins. The combustion efficiency for heptane by oxygen consumption method is about 91%, which is almost same with the previous results of 92% suggested by J. Gore. The convective HRR by enthalpy consumption method was 54% lower than HRR by oxygen consumption method. This results are practical use for establishing the reliability of heat release rate for fire experiment.

조사연구-콘칼로리메타를 이용한 화재시험에 대하여

  • Lee, Du-Hyeong
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.22-28
    • /
    • 1995
  • The rate of heat release is probably the single most important measure of fire hazard. Several tech-niques were developed for the measurement of rate of heat release, but were not suitable for fire test-ing purpose. Recently the application of oxygen consumption principle made it possible to development of well-characterized heat release rate measurement apparatus, the furniture calorimeter for large-scale fire tests and the cone calorimeter for bench-scale fire tests. The cone calorimeter can be used to determine the ignitability as well as heat release rate and smoke development, mass loss rate, combustion gas production etc. from burning materials. Thus, test method using cone calorimeter, an internationally recognized and accepted for the evalua-tion of fire properties, is a very promising tool for combustion study on various kind of materials and products.

  • PDF

Heat Release Rate Measurements of Residential Combustibles Using Oxygen Consumption Method (산소소모법을 이용한 주택 가연물 발열량 측정)

  • Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.104-107
    • /
    • 2008
  • Heat release rates of main combustibles in residence area were measured by a calorimeter using oxygen consumption method. It was found that the peak heat release rates of the combustibles were 1.0MW for a refrigerator, 0.8MW for a desk, 4.2MW for a wardrobe and 0.4MW for a bed. Especially, the refrigerator and wardrobe were found to be very hazardous because of their fast fire growth rate.

Fire Simulation by Pyrolysis Method of FDS for the Small Cone Calorimeter (ISO 5660) (FDS 열분해 모델을 이용한 콘칼로리미터(ISO 5660) 화재 시뮬레이션)

  • Yang, Sung-Jin;Jang, Jung-Hun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.206-212
    • /
    • 2009
  • Chemical behaviors of each surface material for interior facilities affect to fire initiation and growth in general fire situation. These chemical behaviors were characterized by thermal properties (Heat release rate, Pyrolysis rate, specific heat, etc) which could be derived from experimental test. Especially, Heat release rate which indicates aspect of fire size is one of the most important property to asses fire hazard and protection needs. The cone calorimeter test (ISO 5660) has recently assumed to a dominant role in bench scale fire testing to obtain the Heat release rate of materials. This value could be calculated by the 'Oxygen Consumption Method' under various producing irradiances to each surface of materials. In this study, Process of the cone calorimeter test was simulated by Pyrolysis model of FDS (Fire Dynamics Simulator by NIST) base on the ISO 5660 international standard. Then, we could estimate the simulation method of FDS in case of single materials through the comparative study with test results.

  • PDF

Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire (메탄화재의 이산화탄소 생성법에 의한 화재발열량 측정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO2 mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO2 in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

COMBUSTION TOXICITY ANALYSIS: ADVANCES USING A SPECIALIZED SAMPLING TECHNIQUE FOR FOURIER TRANSFORM INFRARED (FTIR) ANALYSIS

  • Talandis, Jonas;Innes, J.D.;Cox, A.W.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.178-184
    • /
    • 1997
  • The cone calorimeter as defined by ISO 5660, ASTM 1354, and NFPA 264A is used to assess the reaction to fire of almost any material that must be evaluated in the fire science field. Typical combustion gas analyses include oxygen, CO and CO2. Oxygen consumption is used to determine rate of heat release. Analysis of combustion gases other than oxygen, CO and CO2 has been attempted using filters to remove the solid smoke particles before analysis. This method has generated unreliable results due to the adsorption of many gas components on the active carbon . particles deposited on the filters. A technique using fourier Transform Infrared (FTIB) analysis without filtration will be disclosed and a discussion will be presented of the analytical results of toxic gases produced from various flame retarded polymeric materials. Use of such data in lethal toxic potency determinations is also reviewed.

  • PDF

The Combustion Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 연소특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Sin, Young-Ju;Kim, Su-Young;Kim, Young-Tak;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.303-307
    • /
    • 2008
  • In this study, we have carried out the cone calorimeter test to examine the thermal characteristics, such as total smoke production(TSP), smoke temperature and oxygen consumption, of significant parts of above trees which are representative species of Young Dong Province of Korea. The smoke production of dead leaves and living leaves of pinus densiflora was increased rapidly at the early period of combustion. So the total smoke production of this parts was 8.3 times higher than other parts. The TSP of branches and barks of quercus dentata was 14.4 and 7.2 times higher than of pinus densiflora respectively. And also the maximum smoke temperature was about $338.35{\sim}353.25\;K$. The significant difference of oxygen consumption was not detected for dead leaves, branches and barks. However, the oxygen consumption of living leaves which have high percentage of moisture content is the lowest.

  • PDF

Application of Numerical Model for the Effective Design of Large Scale Fire Calorimeter (화재발열량계의 효율적 설계를 위한 수치해석 모델의 적용)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • The present study develops a numerical model based on the computational fluid dynamics technique to analyse the thermal flow characteristics of large scale fire calorimeter and examine the characteristics of primary parameters affecting on the uncertainty of heat release rate measurement. ANSYS CFX version 12.1 which is a commercial CFD package is used to solve the governing equations of the thermal flow field and the eddy dissipation combustion model and P-1 radiation model are applied to simulate the fire driven flow. The numerical results shows that the horizontal duct system with $90^{\circ}$ bend duct was shown relatively high deviated asymmetric flow profiles at the sampling location and the deviation of the velocity field was higher than that of the temperature and species quantities. The present study shows that the computational model can be applicable to optimize the design process and operating condition of the large scale fire calorimeter based on the understanding of the detail flow field.

Gas Generation by Burning Test of Cypress Specimens Treated with Boron Compounds (붕소 화합물로 처리된 편백목재 시험편의 연소시험에 의한 가스 발생)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.413-418
    • /
    • 2018
  • Cypress woods treated individually with boric acid (BA4), ammonium pentaborate (APB4), or BA4/APB4 additives were examined for combustion gases. Each of the specimens was painted with a 4 wt% solution of boron compounds three times. Dried at room temperature, the combustion gas was analyzed using a cone calorimeter (ISO 5660-1). Consequently, the second maximum oxygen consumption rate of the specimen treated with boron compounds was 0.1067 to 0.1246 g/s, which was 5.3 to 18.9%, respectively lower than that of the blank specimen. The specific extinction area of specimens treated with BA4 and APB4 was also 2.0 to 19.0% lower, respectively. However, treated with BA4/APB4 showed 21.2% higher than that of the blank specimen. The maximum carbon monoxide concentration of the specimens with boron compounds was reduced by 0 to 25%. It was estimated to be 1.6 to 2.2 times higher than the permissible exposure limits by Occupational Safety and Health Administration (OSHA), indicating a fatal toxicity. The boron compounds were effective in reducing carbon monoxide, but didn't meet the OSHA limit. The boron compound inhibited the burning behavior of the cypress wood, which suppressed the second maximum oxygen consumption rate by 5.3 to 18.9% and the maximum carbon monoxide generation by 0 to 25%.