• Title/Summary/Keyword: Oxygen burner

Search Result 101, Processing Time 0.024 seconds

Combustion characteristics inside the furnace with a flat flame burner by oxygen enriched and swirled air (산소부화와 선회수에 따른 평면화염버너의 로 내 연소특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.177-184
    • /
    • 2001
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and high temperature flame. But information about it is not so enough yet. Flame figure, temperature distribution and emission concentration were measured with oxygen enriched concentration and swirl number in a turbulent diffusion flame to investigate the combustion characteristics. The results showed that flame figure became different as long as oxygen enriched concentration varied and that concentration of NO increased suddenly around $O_2$ 60%.

  • PDF

Experimental study on combustion characteristics of high efficiency oxy-fuel burner (고효율 순산소 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Se-Won;Ahn, Jae-Hyun;Kim, Min-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

Flame Diagnosis using Image Processing Technique (영상처리 기술을 이용한 연소상태 진단)

  • Lee, Tae-Young;Kim, Song-Hwan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.196-202
    • /
    • 1999
  • Recent trend changes a criterion for evaluation of burner that environmental problem is raised as global issue. For efficient driving problem, the higher thermal efficiency and the lower oxygen in exhaust gas, burner is evaluated the better. For environmental problem, burner must satisfy $NO_{X}$ limit and CO limit. Consequently, 'good burner' means on whose thermal efficiency is high under the constraint of $NO_{X}$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop feedback control scheme whose output is the consistency of $NO_{X}$ and CO. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. This study focuses on wave length of luminescence from chemical reaction measurement of the luminescence via optical measuring apparatus and derive correlation with consistency of components in exhaust gas by image processing technique.

  • PDF

Effects of Combustion Characteristics of the Burners for Non-Oxidizing Direct Fired Furnaces on the Oxidization of the Surface of Steel Plate (무산화 직화로 버너의 연소특성이 강재표면의 산화에 미치는 영향)

  • Park, Heung Soo;Riu, Kap Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.330-341
    • /
    • 1999
  • An experimental study for the two types of burners used in the non-oxidizing direct fired furnaces of the heat treatment process for the cold rolled plate has been carried out to investigate the combustion characteristics and the oxidization of the surface of steel plate. A steep temperature gradient and entrainment of residual oxygen were found near the heating surface in the flame of the nozzle mixing burner which has strong swirl velocity component. It was concluded that the elimination of the residual oxygen and the increase of the temperature of combustion gas on the heating surface are needed to enhance the performance of the burners for application to the non-oxidizing direct fired furnaces.

Model Experiment of Hydrogen Burner Utilizing Platinum Catalyst (백금 촉매를 이용한 수소버너의 모델 실험)

  • Ahn, Yeong Seok;Kim, Jin Won;Kim, Tae Young;Kim, Po Cheon;Oh, Byeong Soo;Ryu, Min Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • Today, human beings are faced with crisis of environmental pollution and fuel exhaustion because energy consumption has increased rapidly as a rise in population, therefore human beings are in need of hydrogen energy as a substitute energy. Hydrogen has the advantages of cleanness and boundlessness, but it has difficulties of storage and safety. Making a nameless hydrogen burner for household in consideration of hydrogen's peculiarity was tried. This hydrogen burner utilized the heat of reaction that was emitted when water was formed by reaction of hydrogen and oxygen, It was tried to impregnate Pt catalyst in ceramic fiber(substrate) for the reaction of hydrogen and oxygen to be reacted more easily. This experiment was inquired that hydrogen is appropriate for being used as burner fuel in home and found out whether its safe usefulness is possible or not.

Combined Application of Burner and Oxidation Catalyst for Diesel Particulate Filter Regeneration (DPF 재생을 위한 버너-산화촉매 복합 적용)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.25-31
    • /
    • 2010
  • Combined technique of burner and DOC has been used for regeneration of Diesel Particulate Filter. Experiments has been performed to increase the temperature of engine exhaust gas to burn the collected soot in DPF at all conditions of operation of 3 liter diesel engine. Ignition temperature of soot can be successfully obtained by heats of burner flame and residual fuel oxidation at diesel oxidation catalyst even in the condition of oxygen deficiency. It is found that the load of air compressor and heat loss can be reduced to the level of practical application. It is also found that CO and THC emissions are not increase by additional combustion of regeneration burner.

Certification Test Result of After-burner Test Facility for Gas-generator of 75 tonf Class Liquid Rocket Engine (75톤급 액체로켓엔진용 가스발생기 후연소 시험설비 인증시험 결과)

  • Kim, Chae-Hyoung;Lee, Kwang-Jin;Han, Yeoungmin;Chung, Yonggahp
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • After-burner test facility for gas generators of 75 tonf class liquid rocket engines was designed, which was verified by the facility certification test of the Combustion Chamber Test Facility(CCTF). The purpose of the certification test of the after-burner test facility is to verify the combustion stability of gas torches equipped in the gas generator and the after-burner test facility by using methane and oxygen gases. In the case of the autonomous test, the supply system provided steadily methane and oxygen gases to the after-burner system without pressure drop. The combustion pressure of the gas torch approached the design requirement. In the case of the coupled test, the gas generator ignition and the fuel-rich exhaust gas combustion were successfully carried out, leading to the verification of the test facility.

The Effect of Focal Length on Fuel Mixing And Combustion in One-focusing Oxygen Burner (일 초점 산소 버너의 초점 거리가 연료 혼합 및 연소에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.814-819
    • /
    • 2011
  • An Oxy-fuel combustion has been studied in order to reduce exhaust emissions and fuel consumption. The flow and flame behaviors are analyzed with focal length variation in one-focussing oxygen burner introduced in this study. Oxygen is supplied into the center of the nozzle, methane fuel is into the outer nozzle of the center, and then oxygen is again supplied into the outer of the fuel nozzle. The test conditions are 5 focal lengths of 100mm to 500mm. The mixing behaviors and temperature distributions are analyzed. The result shows that the shorter the focal length is, the longer the mixing length becomes, and the flame width and length are the biggest in the case of 300mm.

Experimental Study on the Oxygen Combustion Characteristics with $CO_2$ Feeding ($CO_2$ 첨가에 따른 순산소 연소기의 연소특성에 관한 실험적 연구)

  • Seo, Jeong-Il;Guahk, Young-Tae;Bae, Soo-Ho;Hong, Jung-Goo;Lee, Uen-Do;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.26-34
    • /
    • 2005
  • The performance of oxygen combustion with $CO_2$ feeding was investigated in a pyrex tube furnace. The inverse type multi-hole burner was used for improving mixing and wide operating range. It introduced oxygen, fuel, and oxygen, respectively, from center tube to outer tubes. Oxygen combustion characteristics with excess oxygen ratio, oxygen feeding ratio, and $CO_2$ feeding flow rate were studied to optimize the operating condition and to apply the oxygen combustion with recirculation of flue gas to a real furnace. This paper presents results on the effect of $CO_2$ feeding flow rate on the structure of the flames and concentrations of NO and CO emissions. The visible flame length was shortest due to well mixing between fuel and oxygen when the oxygen feeding ratio was 0.25. The NO emission was reduced drastically regardless of excess oxygen ratio when the $CO_2$ feeding flow rate was larger than 15 lpm. The CO emission is varied by changing the $CO_2$ feeding flow rate but the CO emission characteristics is highly affected by excess oxygen ratio. When the excess oxygen ratio is below $\lambda=1.1$, the CO emission increased as the $CO_2$ feeding flow rate increased.

  • PDF

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF